
HP AdvanceNet

HP 9000 Series 300/400 and 600/700/800
Computers

LLA Programmer's Guide

Fli;- HEWLETT
~~ PACKARD

Edition 1
E0291

98194-60524
Printed in U.S.A. 02/91

Notice

Hewlett-Packard makes no warranty of any kind with regard to this
material, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Hewlett-Packard shall
not be liable for errors contained herein or for incidental or consequential
damages in connection with the furnishing, performance, or use of this
material.

Hewlett-Packard assumes no responsibility for the use or reliability of its
software on equipment that is not furnished by Hewlett-Packard.

©1991 Hewlett-Packard Company.

This document contains proprietary information, which is protected by
copyright. All rights are reserved. No part of this document may be
photocopied, reproduced, or translated to another language without the prior
written consent of Hewlett-Packard Company. The information contained in
this document is su1?ject to change without notice.

Hewlett-Packard Co.
19420 Homestead Rd.
Cupertino, CA 95014 U.S.A.

Printing History

New editions are complete revisions of the manual. Update packages, which
are issued between editions, contain additional and replacement pages to be
merged into the manual by the customer. The dates on the title page change
only when a new edition or a new update is published. No information is
incorporated into a reprinting unless it appears as a prior update; the edition
does not change when an update is incorporated.

Note that many product updates and fIXes do not require manual changes and,
conversely, manual corrections may be done without accompanying product
changes. Therefore, do not expect a one-to-one correspondence between
product updates and manual updates.

Edition 1 February 1991

3

List of Effective Pages

The List of Effective Pages gives the date of the current edition and of any
pages changed in updates to that edition. Within the manual, any page
changed since the last edition is indicated by printing the date the changes
were made on the bottom of the page. Changes are marked with a vertical bar
in the margin. If an update is incorporated when an edition is reprinted, these
bars are removed but the dates remain. No information is incorporated into a
reprinting unless it appears as a prior update.

Pages Effective Date

All February 1991

5

Documentation Map

The following documentation map lists the manuals containing information
related to the product described in this manual. You may need information
from one or all of these manuals.

Installing and Administering LAN/9000

Installing and Administering Network Services

Installing and Administering ARPA Services

Installing and Administering NFS Services

NetIPC Programmer's Guide

Berkeley IPC Programmer's Guide

For more information on Ethernet:

The Ethernet, A LAN: Data Link Layer and Physical Layer Specification,
Version 2.0, November 1982, Digital Equipment Corporation, Intel
Corporation, Xerox Corporation

For more information on IEEE 802.3:

CSMA/CD Access Method and Physical Specification, October 1984, Institute
of Electrical and Electronic Engineers

7

Preface

AdvanceNet is the collective name for Hewlett-Packard's data
communications and data management products. Link Level Access for the
HP 9000 (LLA/9000) is one of those products.

9

Audience
The LLA Programmer's Guide is the primary reference manual for
programmers who write or maintain programs that access the LAN link driver
provided by Hewlett-Packard's LAN/9000 product.

10

Assumptions
This manual assumes that you are familiar with networking, the Ethernet and
IEEE 802.3 protocol standards, I/O device drivers and the terminology
associated with these subjects. This manual also assumes that the LAN/9000
link product has been installed on your computer. LAN/9000 installation is
explained in Installing and Administering LAN.

11

Organization
Chapter 1, "LLA Concepts," provides an overview to the LLN9000 product.

Chapter 2, "Using LLA," explains how to use standard HP-UX file system
calls to access the LAN drivers.

Chapter 3, "Network I/O Control Commands," describes the special I/O
control (ioct!) commands provided with LLA

Chapter 4, "LLA Examples," provides LLA programming examples.

Appendix A, "Implementation Differences," lists and explains the differences
between the HP 9000 Series 300/400 and HP 9000 Series 600/700/800 LLA
products.

Appendix B, "LLA Layer 2 Protocols," contains diagrams and text that explain
Ethernet and IEEE 802.3 protocol components.

Appendix C, "Error Messages," lists and describes the error messages
produced by Link Level Access.

12

Contents

Chapter 1 LLA Concepts
LLA and the OSI Model 1-1
OSI Layer 2 1-3

IEEE 802.3 and Ethernet 1-3
Device Files 1-4
HP-UX Calls 1-7

open(2) and close(2) Calls 1-7
read(2) and write(2) Calls 1-7
select(2) Call 1-7
ioctl(2) Call 1-8
Other System Calls 1-8

NETCfRL and NETSTAT Commands 1-9
LLA Header File 1-9

ioctl(2) Syntax 1-10
Address Conversion Routines 1-12
LLA Error Codes 1-13

Chapter 2 Using LLA
Opening a Network Device File .. 2-2
Logging a User-Level Address 2-3

For Ethernet Device 2-3
LOG TYPE FIELD Command 2-3 - -

For IEEE 802.3 Device 2-5
LOG SSAP Command 2-5
LOG DSAP Command 2-6

Logging a Destination Address (Ethernet/lEEE 802.3) 2-7
LOG DEST ADDR Command 2-7 - -

Address Conversion .. 2-8
Reading Data 2-10

Managing the Packet Receive Cache 2-12
LOG READ CACHE Command 2-12 - -

Altering the I/O Timeout Interval 2-13

13

LOG READ TIMEOUT Command 2-13 - -
Writing Data 2-15
Synchronizing I/O Operations 2-17

Asynchronous Signals 2-18
Setting Up Asynchronous Signals 2-19

LLA SIGNAL MASK Command 2-19 - -
Closing a Network Device File 2-21

Chapter 3 Network I/O Control Commands
Collecting and Resetting Interface Statistics 3-2

FRAME HEADER Command 3-3
LOCAL ADDRESS Command 3-4
DEVICE STATUS Command 3-5
MULTICAST ADDRESSES Command 3-5
MULTICAST ADDR LIST Command 3-6 - -
RESET STATISTICS Command 3-6
READ STATISTICS Command 3-7

Interface Statistics .. 3-7
Managing Link Level Protocol 3-10

LOG CONTROL Command 3-10
Resetting an Interface 3-12

RESET INTERFACE Command 3-12
Managing Broadcast Packets 3-13

ENABLE BROADCAST Command 3-13
DISABLE BROADCAST Command 3-13

Managing Multicast Packets 3-14
ADD MULTICAST Command 3-14
DELETE MULTICAST Command 3-15

Chapter 4 LLA Examples
File Transfer Program 4-2
Network Interface Statistics Report Program 4-24

Appendix A Implementation Differences

Appendix B LLA Layer 2 Protocols
Ethernet Frame Structure B-2

Ethernet Destination Address B-3
IEEE 802.3 Frame Structure B-4

14

IEEE 802.3 Frame Structure B-4
IEEE 802.3 Address Field Structures B-5

LLC Structure B-6
Ethernet and IEEE 802.3 Packet Comparison B-9

Implementing Two Protocols B-9

Appendix C Error Messages

Index

15

Figures

Figure 1-1. LLA and the OSI Model 1-2
Figure 4-1. nserver nget 4-4
Figure 4-2. nserver nput 4-5
Figure B-1. Ethernet Frame Structure B-2
Figure B-2. Ethernet Destination Address B-3
Figure B-3. IEEE 802.3 Frame Structure B-4
Figure B-4. IEEE 802.3 Address Fields B-5
Figure B-5. IEEE 802.3 LLC Packet Structure B-6
Figure B-6. IEEE 802.3 DSAP Structure B-7
Figure B-7. IEEE 802.3 SSAP Structure B-8
Figure B-8. IEEE 802.3 and Ethernet Packet Comparison B-9

16

Tables

Table 1-1. Device File Bit Conventions 1-5
Table 1-2. Major Number of LAN/9000 Device Files 1-6

17

Syntax Conventions

nonitalics
Words in syntax statements which are not in italics must be entered exactly as
shown. Punctuation characters other than brackets, braces, and ellipses must
also be entered exactly as shown. For example:

EXIT;

italics

Words in syntax statements that are in italics denote a parameter that must be
replaced by a user-supplied variable. For example:

CLOSE filename

[]
An element inside brackets in a syntax statement is optional. Several
elements stacked inside brackets indicates the user may select anyone or none
of these elements. For example:

[A]
[8] User may select A or B or C or none.
[C]

{ }
When several elements are stacked within braces in a syntax statement, the
user must select one of those elements. For example:

{A}
{B } User must select A or B or C.
{C}

19

A horizontal ellipsis in a syntax statement indicates that a previous element
may be repeated. For example:

[, itemname] ... ;

In addition, vertical and horizontal ellipses may be used in examples to indi­
cate that portions of the example have been omitted.

A shaded delimiter preceding a parameter in a syntax statement indicates that
the delimiter must be supplied whenever (a) that parameter is included or (b)
that parameter is omitted and any other parameter that follows is included.
For example:

itema[titemb] [litemc]

means that the following are allowed:

itema
itema,itemb
itema,itemb,itemc
itema"itemc

When necessary for clarity, the symbol f:1 may be used in a syntax statement to
indicate a required blank or an exact number of blanks. For example:

SET[modifier] f:1 (variable)

underlining

Brackets, braces, or ellipses appearing in syntax or format statements which
must be entered as shown will be underlined. For example:

LET var[lsubscriptl] = value

20

Output and input/output parameters are underlined. A notation in the
description of each parameter distinguishes input/output from output
parameters. For example:

CREATE (parml,parm2,flags,error)

[Key Cap]

A string in bold font enclosed by brackets may be used to indicate a key on
the terminal's keyboard. For example, [Enter] indicates the carriage return
key.

[CTRL]-char
Control characters are indicated by [CTRL] followed by the character. For
example, [CTRL]-Y means the user presses the control key and the Y key
simultaneously.

21

1

LLA Concepts

LLA and the OSI Model

Note The information contained in this manual applies to both the
Series 300/400 and Series 6OOnOO/800 HP 9000 computer systems.
Any differences in installation, configuration, or operation are
specifically noted.

A network architecture is a structured, modular design for networks. The
Reference Model of Open Systems Interconnection (OSI) is a network
architecture model developed by the International Standards Organization
(ISO). HP based the development of the LAN/9000 product on the OSI
model.

In the OSI model, communication tasks are assigned to seven logically distinct
modules called layers. Each layer performs a specific data communication
function. Interfaces between each layer allow each layer to communicate with
the layers directly above and below it. Each layer may also communicate with
its peer layer on a remote computer. Figure 1-1 shows how the LLN9000
product relates to the OSI model.

LLA Concepts 1-1

OSI Model

Applica tion

Layer
(Layer 7)

1
Network

Layer
(Layer 3)

Data Link

Layer
(Layer 2)

Physical

Layer
(Layer 1)

User-Developed LLA

Applications

and the
HP-UX File System

Device Driver

EthernetllEEE 802.3

Interface Card

Portions of the

LAN/9000

product

Figure 1-1. LLA and the OSI Model

LLA (Link Level Access) allows you to access the LAN/9000 device driver at
Layer 2 (Data Link Layer) in the OSI architecture. This driver controls the
Ethernet/lEEE 802.3 LAN interface card at Layer 1 (Physical Layer). The
portions of the LAN/9000 that implement the Ethernet and IEEE 802.3
protocols are, at Layer 2, the driver and, at Layer 1, the interface card and the
remaining hardware that connects the HP 9000 computer to the LAN cable.

Because it provides access to Layer 2, LLA allows you to create applications
that communicate with other vendors that also implement IEEE
802.3lEthernet at Layer 1 and Layer 2, but that do not implement the same
protocols as HP at higher layers. LLA also provides an alternative to using
the other process-to-process communication services provided by the
LAN/9000 product.

Note Refer to Networking Overview: LAN, NS, ARPA and NFS, for a
complete description of the OSI model. Refer to Installing and
Administering LAN for a complete description of how the
LAN/9000 product relates to the OSI model.

1-2 LLA Concepts

OSI Layer 2
The purpose of Layer 2 (Data Link Layer) is to provide reliable transmission
of data over the physical media. Layer 2 accomplishes this by packing raw bits
into message frames for transmission, detecting transmission errors and
controlling access to the physical media. Layer 1 transmits the frames.

IEEE 802.3 and Ethernet
IEEE 802.3 is a standard data link protocol defined by the Institute of
Electrical and Electronic Engineers (IEEE) and adopted by the International
Standards Organization (ISO) for Layer 1 and Layer 2. IEEE 802.3 defines a
baseband coaxial bus media with a media speed of 10 Megabits per second, a
Media Access protocol Carrier Sense Multiple Access/Collision Detection
(CSMNCD), and the IEEE 802.2 Logical Link Control protocol.

Ethernet is a de-facto standard link level protocol that was developed before
IEEE 802.3 was defined. IEEE 802.3 is a standard that evolved from
Ethernet. Ethernet is not as precisely defined as IEEE 802.3, either
electrically or in the frame header. Like IEEE 802.3, Ethernet also defines a
baseband, coaxial, bus media, and the Media Access Method CSMNCD.

IEEE 802.3 and Ethernet nodes can coexist on the same cable, but cannot
communicate with each other.

For complete information about the Ethernet and IEEE 802.3 protocols, refer
to the documentation map at the beginning of this manual.

LLA Concepts 1-3

Device Files
Device files are used to identify the LAN driver, EthernetlIEEE 802.3
interface card, and protocol to be used. Each LAN driver/interface card and
protocol combination (Ethernet or IEEE 802.3) is associated with a device file.

A network device file is like any other HP-UX device file. When you write to
a network device file after opening it, the data goes out on the network, just
as when you write to a disc drive device file, the data goes out onto the disc.

By convention, device files are kept in a directory called Idev. When the
LAN/9000 product is installed, several special device files are created. Among
these files are the network device files associated with the LAN interface. If
default names are used during installation, these files are called 1 devil anO
and Idev/etherO for IEEE 802.3 and Ethernet respectively.

This manual assumes that the LAN/9000 product has already been installed.
Before you begin using LLA, you should verify that the network device files
exist. If the device file directory was named Idev, use the following
commands:

1 s -1 Idev/1 anO

1 s -1 Idev/etherO

The following listing shows an example of the major number definition on a
Series 6000/800 computer only:

IEEE 802.3 Protocol

crw-rw-rw-1 b~~:::~:::;e~~:,:8 08:~$~ffie
............. ·~~0~()O.OJ~~28 08: 5~he~

The fifth column is the major number, the sixth column is the minor number,
and the final column is the name of the device file. In the previous example,
the major number is 50. Bits 17 through 24 of the minor number (00 in the
example) represent the logical unit (LU) number of LAN interface. The last
bit, bit 32, specifies the protocol. A value of 1 signifies Ethernet; a value of 0
signifies IEEE 802.3. As shown in the example, a given LAN interface has

1-4 LLA Concepts

one LV (in this case it is zero) but is associated with two device files: one for
the Ethernet protocol and one for the IEEE 802.3 protocol.

Series 700 only: The major number definition is the same as on a Series
600/800 computer with the exception of the minor number which is bits 8
through 15. In Table 1-1 below, Hw_Loc identifies the hardware location of
the 10 card on the Series 700. This field is always initialized to Ox202 for core
LAN.

Table 1-1. Device File Bit Conventions

Series Protocol Bit LU Number Select Code Hw_Loc

300/400 - 16-23 8-15 -

600/800 31 16-23 - -

700 31 - - 8-19

For the Series 700, the minor number for an Ethernet device file would be
Ox202001. The minor number for an IEEE device file would be Ox202ooo.

Table 1-2 lists the major numbers for the HP 9000 LAN interfaces:

LLA Concepts 1-5

Table 1-2. Major Number of LAN/9000 Device Files

Major Minor
Protocol Computer Interface Number Number

Ethernet Series 300/400 9817IALAN 19 encoded
Card select code

IEEE 802.3 Series 300/400 9817IALAN 18 encoded
Card select code

Ethernet and 808,815,822, 36967A-20N 51 encoded
IEEE 802.3 and 832 NIO LANIC logical unit

and protocol

Ethernet and All600/BOO 36967A-20C 50 encoded
IEEE 802.3 computers CIO LANIC logical unit

(TurboLAN) and protocol

Ethernet and Series 700 A1094-66530 52 encoded
IEEE 802.3 CORE 10 protocol,

Card device lu,
hardware part

Note For complete information about LAN/9000 product installation
and network device file creation, refer to Installing and
Administering LAN. For complete information on Series 600/800
device files, refer to the HP 9000 Series 600/800 System
Administrator's Manual. For Series 300/400 device file
information, refer to the HP 9000 Series 300/400 System
Administrator's Manual.

1-6 LLA Concepts

HP-UX Calls
LLA uses six standard HP-UX file system calls to access the drivers that
control the EthernetlIEEE 802.3 interface cards:

• open (2)

• close (2)

• read(2)

• write (2)

• select (2)

• ioctl(2)

Note This manual provides brief descriptions of the open (2) , close(2),
read(2), write(2), select(2) and ioctl(2)calls. For complete
information about these or any HP-UX call, refer to the HP-UX
Reference Manual. The file system call, fstat(), is not supported for
LAN device files. EINV AL will be returned. Use the stat() system
call instead.

open(2) and close(2) Calls
The HP-UX open(2) call is used to open a device file associated with a LAN
driver. The HP-UX close(2) command is used to close a network device file.

read(2) and write(2) Calls
The HP-UX read(2) call is used to read data from the network The HP-UX
write(2) call is used to write data out to the network.

select(2) Call
The HP-UX select(2) call can be used before read(2) or write(2) calls to help
an application synchronize its I/O operations.

LLA Concepts 1-7

ioctl (2) Call
The HP-UX ioctl(2) call is used to construct, inspect and control the network
environment in which an LLA application will operate. All LLA applications
must use the ioctl(2) call to configure source and destination addresses before
data can be sent or received using the HP-UX read(2) and write(2) calls. The
ioctl(2) call syntax that is used for LLA is described in the "ioctl(2) Syntax"
section later in this chapter.

Other System Calls
The HP-UX stat(2) call is used to obtain information about a device file, such
as the device number, access control, user ID of the file owner, and group ID
of the file group. The [stat (2) call is not supported for LAN device files.

1-8 LLA Concepts

NETCTRL and NETSTAT Commands
LLA defines two types of network I/O control commands:

• NETCTRL commands are used to set up device-specific parameters prior to
read and write operations and to reset the network I/O card and its
statistical registers. There are two types of NETCfRL commands:

• those which affect the network I/O cards, and

• those which affect a particular connection to the network I/O card.

• NETSTATcommands are used to obtain device-dependent status and
statistical information.

NETCfRL and NETSTAT commands are specified using the ioetl (2)
command. Both types of commands are explained in Chapter 2, "Using
LLA," and Chapter 3, "Network I/O Control Commands."

LLA Header File
A special C header file, /usr/i nc 1 ude/net i o. h, is provided with the LLA
software. This file contains definitions of all the data structures and macros
(including NETST AT and NETCfRL) that are used to interface with LLA

LLA Concepts 1-9

ioctl(2) Syntax
The following is a complete description of the ioctl(2) call syntax that is used
for LLA (The LLA data structures and macros used below are defined in the
header file /usr/incl ude/netio.h.)

int ioctl(fildes, request, arg)
int fildes, request;
struct fis *arg;

fildes

request

arg

reqtype

1-10 LLA Concepts

Specifies on which device the ioetl operation is to be
performed. This is the file descriptor of a
successfully opened network device file.

Specifies which type of LLA command to perform.
This parameter must be either NETSTAT or
NETCfRL.

The a rg structure contains the address of an
instance of the f i s data structure. The f i s data
structure contains information necessary to perform
a specific NETCfRL or NETSTAT command. The
arg parameter must be set to the address of a fi s
structure before an ioctl call is made. The type of
information stored in a rg is:

struct fis { int reqtype;
int vtype;

} ;

union {float f;
int i;
unsigned char s[100]

} value;

Contains the name of the NETCfRL or NETSTAT
command to be executed.

vtype Identifies the type of value in the val u e union:

vtype = INTEGERTYPE
indicates that the value is in value. i .

vtype = FLOATIYPE
indicates that the value is in value. f.

vtype = a non-negative integer (0 s vtype :s 99)
indicates that the value is a character string in
val ue. s. This integer also specifies the length of
the string.

Note At present, no LLA operations use FLOA TIYPE values.

If successful, ioctl(2) returns a value of 0; if an error occurs, -1 is returned.
Actual error values are returned to the HP-UX external variable ermo. An
ioctl (2) call will fail if:

• fi 1 des is not a valid file descriptor.

• request is not appropriate for the selected device.

• request or arg are invalid.

• Resources are not available to service the request at this time.

LLA Concepts 1-11

Address Conversion Routines
LLA provides two special library routines that allow you to translate station
addresses between ASCII and binary formals. These library routines, called
net_aton(3n) and net_ntoa(3n), are explained in detail in Chapter 2, "Using
LLA" Both routines are located in /usr/l i b/l ibn. a.

1-12 LLA Concepts

LLA Error Codes
The HP-UX file system calls utilized by LLA (open (2) , close (2) , read(2),
write (2) , select(2), and ioctl(2)) are integer functions that return -1 when an
error is encountered. Actual error values are returned to the HP-UX external
variable errno. The values for errno are defined in the file
/usr/i ncl ude/sys/errno. h and in the HP-UX Reference Manual entry for
errno(2). Certain errno return values are also described in this manual.

LLA Concepts 1-13

2

Using LLA

Warning LLA is a utility for sophisticated users. Because LLA can
have potentially destructive or catastrophic effects on your
network, only programmers with experience with
networking, the Ethernet and IEEE 802.3 protocols and I/O
device drivers should use LLA.

You must perform the following steps in order to transmit and receive data
over a network using LLA:

1. Open a network device file.

2. Log a user-level address.

3. Log a destination address.

4. Read or write data.

5. Close the network device file.

This chapter describes the standard HP-UX file system calls and LLA
NETCfRL commands that are used to perform these steps. Additional
NETCfRL commands are described in Chapter 3, "Network I/O Control."

Note The behavior of EthernetlIEEE 802.3 device file descriptors is
similar to that of other file descriptors: multiple processes sharing
a file descriptor can interfere with each other. You should be
particularly aware of this when using the NETCfRL commands
described in this chapter and when performing read(2) operations.

Using LLA 2-1

Opening a Network Device File
You must use the HP-UX open(2) call to open the network device file before
performing read(2) and write(2) operations. The following is a brief
description of the open (2) call.

int open(path, oflag)
char *path;
int oflag;

path

oflag

Points to a path name that identifies the device.

Constructed by using the OR symbol (' I ') to
combine the desired flag options.

The open(2) call returns a file descriptor for the file that was opened. The
only applicable option flags are the delay flag, ° _NDELA Y, the read only
flag, O_RDONLY, and the read/write flag, O_RDWR. IfO_NDELAY is set
and no data is available, a read(2) call returns immediately. If you wish to use
only the NETSTATcommands, specify the O_RDONLY flag. For other uses,
you must specify the 0 _ RDWR flag.

The first example below shows a device file being opened without specifying
the delay flag:

open("/dev/lanO", O_RDWR);

The next example shows a device file being opened with the delay flag
specified:

open("/dev/lanO", O_RDWRIO_NDELAY);

The following error values may be returned to ermo:

• EINV AL-This value is returned if neither 0 RDWR nor 0 RDONL Y
was specified, or if an option other than 0_ RDWR, 0_ RDONL Y, or
o _NDELA Y was specified.

• ENXIO-This value is returned if the device specified does not exist, the
device file has an invalid logical unit number or unsupported protocol.

• ENOBUFS-This value is returned if no network memory are available
(not enough memory) to set up the data link structures. Refer to Installing
and Administering LAN for more information about network memory.

2-2 Using LLA

Logging a User-Level Address
Before you can perform read(2) or write(2) operations to a network interface,
you must log a user-level address. A type field represents a user-level address
if the device is Ethernet. A source service access point, or ssap, represents a
user-level address if the device is IEEE 802.3.

The following sections describe how to log a type field or an ssap using the
HP-UX ioctl(2) call with NETCIRL commands. Complete syntax for the
ioctl(2) call is provided in Chapter 1, "LLA Concepts."

For Ethernet Device
If you perform read or write operations to an Ethernet device, you must
specify a user-level address by logging a type field of the Ethernet header with
the driver.

LOG TYPE FIELD Command
To log a type field using an ioctl(2) call, you must specify NETCTRL in the
ioctl(2) call's request parameter and initialize the arg parameter to contain
the LOG TYPE FIELD command. - -

Initialization of a rg for a LOG_TYPE _FIELD command is:

arg.reqtype LOG TYPE FIELD
arg.vtype = INTEGERTYPE
arg.value.i type field

The type field is the user -level address for the network connection being
established. The format of the type field is an integer in the range of 1536 to
65535. Using values outside of this range results in an EINVAL error.

A LOG_TYPE _FIELD command fails with an EBUSY error if the type field
is already logged or in use by another file descriptor on the same device file.

Using LLA 2-3

Warning DO NOT assign the following type field values, as they are
reserved addresses: 2048, 2053, 2054, 32773. Using them
may adversely affect operation of the HP network and will
result in an EBUSY error. Other specifically reserved
addresses include 4096 through 4111. These types are
reserved for use by Berkeley Trailer Protocols. If your
network is a multivendor network or an internetwork
system, authorization to use specific type field values
should be obtained from Xerox Corporation.

Only one type field per network interface can be declared per open file
descriptor. The type [reid cannot be changed once it is logged, and cannot be
shared among other open file descriptors.

The driver uses the type field during read and write-operations. The device
header attached to the data on a write(2) call contains the type [reid. The
read(2) call returns the data from a packet only if the type field on the packet
header matches the logged type [reid.

2-4 Using LLA

For IEEE 802.3 Device
If you perform read or write operations to an IEEE 802.3 device, you must
specify a user-level address by logging a source service access point (ssap) with
the driver.

LOG SSAP Command
To log the ssap using an ioctZ(2) call, you must specify NETCfRL in the
ioctZ(2) call's request parameter and initialize the arg parameter to contain
the LOG SSAP command.

Initialization of a rg for a LOG _ SSAP command is:

arg.reqtype LOG SSAP
arg.vtype = INTEGERTYPE
arg.value.i = ssap

The ssap is the user-level address for the network connection being
established, and it must be a unique address. The format of the ssap is an
even integer in the range of 2 to 254. Using odd values or values outside of
this range will result in an EINV AL error. (Odd values are reserved by the
IEEE.) Only one ssap per network interface can be declared per open file
descriptor. Once an ssap has been logged, it cannot be changed without
closing and reopening the device file.

Note DO NOT assign the following ssap values, as they are reserved
addresses: 6,252,248. Using them will adversely affect operation
of the HP network.

LOG _ SSAP fails with an EBUSY error if the ssap value is already logged or
in use by another file descriptor on the same device file.

The LOG _ SSAP command also sets the destination service access point, or
dsap, to the same value as the ssap. The dsap is discussed in the following
section.

Using LLA 2-5

LOG DSAP Command
The dsap is the user address of the remote protocol with which
communication is desired. The driver uses the ssap/dsap fields in read and
write operations. The link level header attached to the data on a write(2) call
contains the ssap/dsap values. read(2) calls will return the data from a packet
only if the dsap value on the packet header of incoming IEEE 802.3 packets
matches the logged ssap value.

Unlike the ssap, which cannot be changed without closing and reopening the
device file, a dsap can be changed as often as necessary. If you want to
change the dsap, you must execute a LOG _ DSAP command.

To log a dsap using an ioctl(2) call, you must specify NETCIRL in the ioctl(2)
call's request parameter and initialize the arg parameter to contain the
LOG DSAP command.

Initialization of arg for a LOG_DSAP command is:

arg.reqtype = LOG DSAP
arg.vtype = INTEGERTYPE
arg.value.i dsap

The format of the dsap field follows the same conventions and restrictions ~
described above for the ssap field, although odd dsaps and a dsap of zero may
be logged. The dsap value can be changed as many times as necessary.
LOG _ DSAP must be executed after the LOG _ SSAP operation.

2-6 Using LLA

Logging a Destination Address (Ethernet!
IEEE 802.3)
Before writing to a network device, a destination address should be declared.
This is done using an HP -UX ioetl (2) call. Complete ioetl (2) syntax is
described in Chapter 1, "LLA Concepts."

LOG DEST ADDR Command
To declare a destination address using an ioetl(2) call, you must specify
NETCTRL in the ioctl(2) call's request parameter and initialize the arg
parameter to contain the LOG _ DEST _ ADDR command.

Initialization of arg for the LOG _DEST_ADDR command is:

arg.reqtype = LOG DEST ADDR
arg.vtype = length of arg.value.s = 6
arg.value.s destination address

The destination address is the station address, in binary form, of the remote
Ethernet/lEEE 802.3 device that is to receive the data. The device header
attached to th~ data packets on write(2) calls contains the destination address.
LOG_DEST_ADDR can be called as often as necessary.

A station address (also referred to as an Ethernet address, LAN address,
IEEE 802.3 address or network station address) is a link-level address that is
the unique address of an Ethernet/lEEE 802.3 interface card. This value is
set at the factory and cannot be changed. To find out what the station address
is for a particular card, you can run the lansean (l M) command, the landiag
(lM) command, the LANDAD portion of the Online Diagnostic Subsystem, or
refer to the Network Map for your network. Both describe the station
address in hexadecimal form. Since the LOG_DEST_ADDR requires that
you specify the station address in binary form, you must convert the address
before executing this command. LLA provides two address conversion
routines for this purpose.

Using LLA 2-7

Address Conversion
Two address conversion routines, net_aton(3n) and net_ntoa(3n), are provided
to help you translate station addresses between hexadecimal, octal or decimal
and binary formats. The net_aton(3n) library routine converts a hexadecimal,
octal or decimal address to a binary address; the net_ntoa(3n) library routine
converts a binary address to an ASCII hexadecimal address. Both routines are
provided in /usr/l i b/l i bc. a.

net_aton(3n)

The net_aton(3n) routine converts an Ethernet or IEEE 802.3 station address
to binary form. The function is:

char *net aton(dstr, sstr, size)
char *dstr;
char *sstr;
int size;

dstr

sstr

size

Pointer to the binary address returned by the
function.

Pointer to a null-terminated ASCII form of a station
address (Ethernet or IEEE 802.3). This address may
be an octal, decimal or hexadecimal number as used
in the C language. In other words, a leading Ox or
OX implies hexadecimal; a leading 0 implies octal.
Otherwise, the number is interpreted as decimal.

Length of the binary address to be returned in d s t r.
The length is 6 for EthernetlIEEE 802.3 addresses.

A NULL value is returned if any error occurs, otherwise d s t r is returned.

2-8 Using LLA

net_ntoa(3n)

The net_ntoa(3n) routine converts a 48-bit binary address to its ASCII
hexadecimal equivalent. The function is:

char *net ntoa(dstr, sstr, size)
char *dstr;
char *sstr;
int size;

dstr

sstr

size

Pointer to the ASCII hexadecimal address returned
by the function. Dstr is null-terminated and padded
with leading zeroes if necessary. Dstr must be at
least (2 * size + 3) bytes long to accommodate the
size of the converted address.

Pointer to a station address in its binary form.

Length of sstr.

A NULL value is returned if any error occurs, otherwise d s t r is returned.

Using LLA 2-9

Reading Data
You must use the HP-UX read(2) call to read data from the network.

Note Before attempting to read data, you must declare a user-level
address as described in "Logging a User-Level Address" earlier in
this chapter. An attempt to read data without having logged a
user-level address will return the error EDEST ADDRREQ.

The following is a brief description of the HP-UX read(2) call.

int read(fildes, buf, nbytes)
int fildes;
char *buf;
unsigned nbytes;

fildes

buf

nbytes

Specifies which device the data is to be read from.
Read fails if fi 1 des is not a valid file descriptor.

Buffer into which data read from the network is
placed.

nbytes should be greater than or equal to zero. A
negative number returns a -1 with EINV AL in the
ermo variable. Maximum number of bytes of data to
be read.

Upon successful completion, read(2) returns the number of bytes actually read
and placed in the buffer. If an error occurs, read(2) returns a -1. If a packet
(the data message and its Ethernet/lEEE 802.3 header) is not immediately
available, the process is blocked until a packet with the proper user-level
address (specified by LOG_TYPE _FIELD for Ethernet and by LOG _ SSAP
for IEEE 802.3) arrives, or until a timeout occurs (EIO is returned on
timeout). However, if the 0 _NDELA Y flag is set, the process is NOT
blocked, but returns -1 with EWOULDBLOCK in the ermo variable.

Blocked read operations will terminate upon delivery of signals to the calling
process, and the error EINTR is returned to the process.

2-10 Using LLA

Read and write operations may only address a single packet of data
appropriate for the protocol being used.

The link level frame header is not returned with the read, only user data will
be placed in the user's buffer. The frame header for the last read packet may
be obtained with the ioctl NETS TAT FRAME HEADER call.

The maximum number of data bytes that can be transferred per read(2) call
is:

• 1500 bytes for Ethernet.

• 1497 bytes for IEEE 802.3.

The minimum number of data bytes that can be transferred per read (2) call
is:

• 46 data bytes for Ethernet.

• 0 data bytes for IEEE 802.3.

Note A packet is truncated to fit in the user buffer if the allocated buffer
(buf) is too small. Since the packet size is usually not known
before it is received, it is recommended that you always use a
buffer size of 1500 bytes when reading.

A received data packet cannot be less than the minimum data packet size
because the sending node pads such packets. For IEEE 802.3, the receiving
node detects and strips off any padding characters. They are not stripped
from Ethernet packets. The actual data delivered is equal to or less than the
user buffer size. If the received data packet is greater than the user-specified
buffer size, then the actual data delivered will be truncated. The user
program should compare the amount of bytes read with the amount requested.

Padded characters are not stripped off by the Ethernet drivers. Usually, the
user program is expecting data to always be a certain size and can ignore the
padded characters.

Using LLA 2-11

For example:

User buffer is 1400 bytes.
Minimum number of data bytes is 46 bytes for Ethernet and 0 bytes for
IEEE 802.3.
Inbound packet contains 40 data bytes.
For IEEE 802.3, 40 bytes are returned.
For Ethernet, 46 bytes (40 + 6 pad characters) are returned.

Note The LAN drivers do not guarantee data delivery. On a successful
write(2), the only guarantee is that the data has been queued for
transmission by the LAN interface card. Likewise, there is no
guarantee that, once transmitted, data will be received by the
target computer. The desired degree of reliability must be coded
into your program using acknowledgement or sequencing
algorithms.

Managing the Packet Receive Cache
By default, only one packet received for an active type field or destination sap
(dsap) is cached prior to a read of the associated file descriptor. Subsequent
packets received for that file descriptor are discarded. This one-packet cache
may be suitable for request/reply protocols, but may not be suitable for
applications that communicate with more than one host or where windowing
protocols are used. The NETCfRL command LOG_READ _ CACHE can be
used to increase the receive caching for up to 16 packets for normal users and
64 packets for super users.

The following section describes how to specify the LOG_READ _ CACHE
command using the ioctl (2) call.

LOG READ CACHE Command
To alter the read cache, you must specify NETCfRL in the ioctl(2) call's
request parameter and initialize the arg parameter to contain the
LOG READ CACHE command. - -

2-12 Using LLA

Initialization of arg for the LOG_READ_CACHE command is:

arg.reqtype = LOG READ CACHE
arg.vtype = INTEGERTYPE
arg . val ue. i = number of packets s 16 (normal user) or

64 (super user) to be added to cache

If you assign arg. va 1 ue. i a value greater than 16 (64, super user), it is
interpreted as 16 (64, super user). LOG_READ_CACHE returns an
ENOBUFS error to ermo if the requested memory is unavailable.

Altering the I/O Timeout Interval
The default timeout value for read(2) is zero. A timeout value of zero causes
an executing read(2) operation to be blocked indefinitely until data is
available. The NETCfRL command LOG_READ_TIMEOUT is provided to
set the timeout value for read operations.

The following section describes how to specify the LOG_READ _TIMEOUT
command using the ioetl (2) call.

LOG READ TIMEOUT Command
To alter the I/O timeout interval using an ioetl(2) call, you must specify
NETCfRL in the ioetl(2) call's request parameter and initialize the arg
parameter to contain the LOG_READ _TIMEOUT command.

Initialization of a rg for the LOG_READ _TIMEOUT command is:

arg.reqtype = LOG READ TIMEOUT
arg.vtype = INTEGERTYPE
arg.value.i read timeout value in milliseconds

A positive timeout value causes a read(2) to fail if no data is available and the
specified time has elapsed. If a read timeout occurs, read will return a -1 with
EIO placed in ermo. A negative timeout value will fail with EINV AL
returned. The read(2) option 0 _NDELA Y overrides the timeout mechanism;
if data is not immediately available, a read (2) returns a -1 with an
EWOULDBOCK error in ermo immediately.

Using LLA 2-13

Note Due to race conditions caused by asynchronous interrupts, the
accuracy of the timer is guaranteed only to the extent that it does
not timeout sooner than the assigned value.

2-14 Using LLA

Writing Data
You must use the HP-UX write(2) call to send data out to the network.

Note Before attempting to write data, you must declare a user-level
address and a destination address. Declaring a user-level address
is described in "Logging a User-Level Address" earlier in this
chapter. Declaring a destination address is described in "Logging
a Destination Address," also earlier in this chapter. Attempting to
write data prior to logging a destination address or user level
address returns the error EDESTADDRREQ.

The following is a brief description of the HP-UX write call.

int write(fildes, buf, nbytes)
int fildes;
char *buf;
unsigned nbytes;

fildes

buf

nbytes

Specifies which device the data is to be written to.
A write(2) call fails if fi 1 des is not a valid file
descriptor.

Pointer to a buffer that holds the data to be written.

Number of bytes of data to be written.

Upon successful completion, write(2) returns the number of bytes actually
written. If an error occurs, write(2) returns a -1. The write(2) call transfers
packets to an internal transmit queue, from which they are sent out on the
network. If a write is performed when the transmit queue is exhausted or if
network memory allocated to this connection is insufficient to handle the
write request, ENOBUFS is returned.

Read and write operations can only address a single packet of data
appropriate for the protocol being used.

Using LLA 2-15

The maximum number of data bytes that can be transferred per write(2) call
is:

• 1500 bytes for Ethernet.

• 1497 bytes for IEEE 802.3.

The minimum number of data bytes that can be transferred per write (2) call
is:

• 46 data bytes for Ethernet.

• 0 data bytes for IEEE 802.3.

If a write(2) packet is smaller than the minimum size, it is padded with
undefined characters. These are removed by a receiving IEEE 802.3 driver,
but not by a receiving Ethernet driver. If a write(2) packet is greater than the
maximum number of bytes, 0 bytes are written, and the error EMSGSIZE is
returned.

Note The network drivers do not guarantee data delivery. On a
successful write(2), the only guarantee is that the data has been
queued for transmission by the LAN interface card. Likewise,
there is no guarantee that, once transmitted, data will be received
by the target computer. The desired degree of reliability must be
coded into your program using acknowledgement or sequencing
algorithms.

2-16 Using LLA

Synchronizing I/O Operations
You can use the HP-UX select call before performing read(2) or write(2)
operations to help an application synchronize its I/O operations. Select is not
supported for exceptional conditions. The following is a brief description of
the select(2) call.

int select (nfds, readfds, writefds,
execptfds, timeout)
int nfds, *readfds, *writefds, *execptfds;
struct timeval *timeout;

nfds

readfds

writefds

execptfds

timeout

Specifies the maximum number of file descriptors for
which to check.

Pointer to a bit-mapped integer that specifies which
file descriptors are to be checked for reading.

Pointer to a bit-mapped integer that specifies which
file descriptors are to be checked for writing.

File descriptor for pending exceptional conditions.
This option is not supported by LLA. Use a value
of 0 for the bit which refers to the network device.

If a non-zero pointer, this parameter specifies a
maximum interval to wait for the selection to
complete. If it is a zero pointer, the select(2) waits
until an event causes one of the masks to be
returned with a valid (non-zero) value.

A select(2) call returns on a read(2) operation when a packet is available for
the correct user-level address. The select(2) call returns on a write(2)
operation when there is room for the packet in the transmit queue.

Because select(2) does not reserve resources, it does not guarantee
uninterrupted completion of a subsequent I/O operation.

Using LLA 2-17

Asynchronous Signals
As a companion to select(2), the user may set up a file descriptor to receive
signals asynchronously. This is done with the ioctl(2) command, using the
NETCTRL request type LLA_SIGNAL_MASK. If this mask is set to
LLA _ PKT _ RECV, a SIGIO signal is generated on the user process when a
packet arrives for a file descriptor associated with that process. If the mask is
set to LLA_Q_OVERFLOW, a SIGIO signal is generated on the user process
when the inbound queue for an associated file descriptor overflows, which
causes a packet to be dropped. These two options may be combined in the
mask, so the SIGIO signal is generated by either condition. If signals are used
with more than one LLA file descriptor, select(2) may be used to help
determine which file descriptor generated the signal.

2-18 Using LLA

Setting Up Asynchronous Signals
The NETCTRL command LLA_SIGNAL_MASK is provided to allow the
user to request the generation of a SIGIO signal to the user process upon
certain events.

LLA SIGNAL MASK Command
Initialization of arg for the LLA_SIGNAL_MASK command is:

arg.reqtype =

arg.vtype =
arg.value.i =

LLA SIGNAL MASK - -

INTEGERTYPE
LLA NO SIGNAL

Do not generate any
signals (default)

LLA_PKT_RECV SIGIO generated
when packet has
arrived on queue.

LLA_Q_OVERFLOW SIGIO generated
when inbound queue
has overflowed,
resulting in a dropped
packet.

If signal disabling is desired, set value.i to LLA_NO _SIGNAL:

arg.value.i = LLA_NO_SIGNAL

If one of, but not both of LLA PKT RECV or LLA Q OVERFLOW is
desired, assign the appropriate value to value.i: --

or

arg.value.i = LLA_Q_OVERFLOW

If both LLA PKT RECV and LLA Q OVERFLOW are desired, OR the
values together. - - -

Using LLA 2-19

The only case in which a signal will not be generated despite the appropriate
event occurring is if the process is already blocked on a read to the LLA
connection.

Note Combining mask values results in ambiguity as to the cause of a
received signal, since it could be generated either by the arrival of a
packet, or by inbound queue overflow. Also, the driver will only
signal the process which last configured the
LLA_SIGNAL_MASK. Processes that share file descriptors can
potentially interfere with the intended use of LLA SIGIO.

2-20 Using LLA

Closing a Network Device File
You must use the HP-UX close(2) call to close a network device file. The
following is a brief description of c1ose(2) call.

int close(fildes)
int fildes;

fildes Specifies which EthernetlIEEE 802.3 device file is to
be closed.

The operation fails if fi 1 des is not a valid open file descriptor.

Using LLA 2-21

3

Network I/O Control Commands

This chapter describes the NETCfRL and NETSTAT commands provided by
LLA to perform the following activities:

• Collect and Reset Interface Statistics.

• Manage Network Addresses.

• Reset an Interface.

• Manage Broadcast Packets.

• Manage Multicast Packets.

The commands described in this chapter are organized according to these
activities. All of these activities are accomplished using the standard HP-UX
ioctl(2) call. The ioctl(2) syntax used for LLA is described in Chapter 1,
"LLA Concepts."

Network I/O Control Commands 3-1

Collecting and Resetting Interface
Statistics
Many commands are provided for collecting and resetting interface statistics.
Several of these commands, referred to as Reset and Read Statistics
Commands, can be used as either NETCfRL or NETSTAT ioctl(2)
commands. The meaning of each of these commands is different depending
on which request value (NETCfRL or NETSTAT) is used.

The following commands are used as NETSTATcommands only; these
commands are described first:

• FRAME HEADER.

• LOCAL ADDRESS.

• DEVICE STATUS.

• MULTICAST ADDRESSES.

• MULTICAST ADDR LIST. - -

3-2 Network I/O Control Commands

FRAME HEADER Command
This command returns the EthernetlIEEE 802.3 device header associated with
the last read(2) call. The header contains the target computer's station
address (the destination address), the transmitting computer's station address
(the source address), and the user-level address.

Note The FRAME_HEADER command returns unpredictable
information if there has not been a previous read(2).

Initialization of arg for an Ethernet FRAME_HEADER command is:

arg.reqtype = FRAME_HEADER

FRAME HEADER returns:

arg.vtype 14

arg.value.s s[O] to s[5] = destination address

The destination address is the
sender's destination address, which
could be the local device's station
address, a multicast address or the
broadcast address.

s [6] to s [11] = source address

The source address is the station
address of the sender's device.

s[12] to s[13] = type field

The type field is the user-level
address, specified as a 2 byte
unsigned integer.

~ Initialization of a rg for an IEEE 802.3 FRAME_HEADER command is:

arg.reqtype = FRAME HEADER

Network I/O Control Commands 3-3

FRAME HEADER returns:

arg.vtype 17

arg.value.s s[O] to s[5] = destination address

s [6] to s [11] = source address

s [12] to s [13] = received packet's length, including
data, dsap/ssap and control [reid

s[14]

s[15]

s[16]

= dsap value

= ssap value

= control field value

Use the netytoa(3n) routine to convert the returned destination addresses to
ASCII form. (See Chapter 2, "Using LLA," for an explanation of the
net_atoa(3n) routine.)

LOCAL ADDRESS Command
This command returns the station address of the local EthernetlIEEE 802.3
device.

Initialization of arg for the LOCAL_ADDRESS command is:

arg.reqtype = LOCAL_ADDRESS

LOCAL ADDRESS returns:

arg.vtype = 6
a rg . val u e . s = local station address

If necessary, use the net_ntoa(3n) routine to convert the returned address to
ASCII form. (See Chapter 1, "Using LLA," for an explanation of the
net_ntoa(3n) routine.)

3-4 Network I/O Control Commands

DEVICE STATUS Command
This command returns the value of the current status of the local
EthernetlIEEE 802.3 device.

Initialization of arg for the DEVICE_STATUS command is:

arg.reqtype = DEVICE_STATUS

DEVICE STATUS returns:

arg.vtype
arg.value.i

= INTEGERTYPE
= INACTIVE

INITIALZING
ACTIVE
FAILED

The constants returned to arg. va 1 ue. i are defined in the LLA header file
/usr/i ncl ude/net i o. h. These constants have the following meanings:

• INACTIVE-the driver is "alive" but not currently active.

• INITIALIZING-the driver is processing an initialization request.

• ACTIVE-the driver is "alive," and a request is active on the card.

• F A I L ED-the driver is in a "dead" state. A reset is required.

MULTICAST ADDRESSES Command
This command returns the current number of accepted multicast addresses.

Initialization of arg for the MULTICAST_ADDRESSES command is:

arg.reqtype = MULTICAST_ADDRESSES

MULTICAST ADDRESSES returns:

arg.vtype
arg.value.i =

INTEGERTYPE
number of multicast addresses

Network I/O Control Commands 3-5

MULTICAST ADDR LIST Command - -
This command returns the current list of accepted multicast addresses.

Initialization of arg for the MULTICAST_AD DR_LIST command is:

arg.reqtype = MUlTICAST_ADDR_lIST

MULTICAST ADDR LIST returns: - -
arg.vtype
arg.value.s =

length of arg. va 1 ue. s
list of multicast addresses

The value in arg. vtype represents the number of bytes used for the
contiguous address list in arg. va 1 ue. s. Each address is six bytes long. The
maximum number of bytes that can be returned is 96.

This statistic is kept by the Series 600/700/800 only.

RESET STATISTICS Command
The RESET_STATISTICS command can be used as a NETCTRL ioctl(2)
command. It is used to reset interface statistics that are kept by the interface
card. When request equals NETCTRL and arg.reqtype is
RESET STATISTICS, all statistics counters are reset to zero. The
NETcTRL reset statistics command requires super-user capability.

An unrecognized request type will return an ermo value of EINV AL. A
NETCfRL request without super-user capability will return the error EPERM.

RESET STATISTICS NETCTRL: Resets all statistics counters to
zero. No operands are necessary.

3-6 Network I/O Control Commands

READ STATISTICS Command
When request equals NETSTAT, the current value of the statistic specified
in arg . reqtype is returned.

The value returned from a statistics counter represents the value since the last
reset of that counter. The value of the statistic applies to the device, as
opposed to an open file descriptor associated with the device. The result is
returned in the appropriate field of the arg. va 1 ue union.

An unrecognized request type will return an ermo value of EINVAL.

Interface Statistics
The following NETSTAT commands are used to collect interface statistics
that are kept by the interface card.

RESET_STATISTICS

UNTRANS_FRAMES

NETSTAT: Not applicable. Will return
EINV AL if used.

NETSTAT: Returns the number of packets
received without error.

NETSTAT: Returns the number of packets
transmitted without error.

NETSTAT: Returns the number of packets
that, due to some error, could not be
transmitted.

NETSTAT: Returns the number of packets
which were received, but due to some error,
could not be delivered to an appropriate
network connection.

NETSTAT: Returns the number of packets
received with a bad CRC.

This is hardware-dependent statistic that
indicates problems with the Medium
Attachment Unit (MAU) cabling.

NETS TAT: Returns the number of transmit
packets for which no heartbeat was detected.

Network I/O Control Commands 3-7

MISSED_FRAMES

ALIGNMENT_ERRORS

DEFERRED

ONE COLLISION

MORE_COLLISIONS

LATE_COLLISIONS

EXCESS_RETRIES

NETSTAT: Returns the number of times that
the card missed packets due to lack of
resources.

NETSTAT: Returns the number of packets
received with an alignment error and a bad
eRe.

NOTE: These packets are also counted by the
RX BAD eRe FRAMES counter. - - -
NETSTAT: Returns the number of packets
that had to defer before transmission.

NETSTAT: Returns the number of
transmissions completed with one collision.

NETSTAT: Returns the number of
transmissions completed with more than one
collision.

NETSTAT: Returns the number of transmit
packets for which the card detected a late
collision.

NETSTAT: Returns the number of packets
that were not transmitted due to an excessive
number of retries (16 or more).

NETSTAT: Returns the number of transmit
packets that failed due to the loss of the carrier.

This is a hardware-dependent statistic that
indicates problems with the Medium
Attachment Unit (MAU) cabling.

3-8 Network I/O Control Commands

BAD_CONTROL_FIELD

TDR

RX XID

RX_SPECIAL_DROPPED

ILLEGAL_FRAME_SIZE
Series 600/800 only

NO_TX_SPACE
Series 600/800 only

LITTLE RX SPACE
Series 600/800 only

NETSTAT: Returns the number of IEEE 802.3
packets received with an invalid control field.

NETSTAT: Returns the number of packets
dropped because the type field or dsap
referenced an unknown protocol.

NETSTAT: Returns the time (in bit times)
from when a frame started to transmit until a
collision occurred. This statistic can be useful
for grossly determining where on the cable a
problem is located. This statistic is not updated
after an externalloopback frame is transmitted.

NETSTAT: Returns the number IEEE 802.3
XID packets that were received.

NETSTAT: Returns the number of IEEE 802.3
TEST packets that were received.

NETSTAT: Returns the number of IEEE 802.3
XID or TEST packets that were received but
not responded to due to lack of resources.

NETSTAT: Returns the numbers of times the
card received and discarded packets that were
illegal in size (greater than 1514 bytes). Not
supported on Series 700.

NETSTAT: Returns the number of times that
the card exhausted its transmit buffer space.
Not supported on Series 700.

NETSTAT: Returns the number of times the
card had one or no buffers to accept incoming
packets. Not supported on Series 700.

Network I/O Control Commands 3-9

Managing Link Level Protocol
Five NETCTRL commands are provided to manage network addresses. These
commands are:

• LOG_TYPE _ FIELD-(Ethernet) Log type field of the Ethernet header.

• LOG _ SSAP-(IEEE 802.3) Log source service access point.

• LOG _ DEST _ADDR-(Ethernet or IEEE 802.3) Log destination network
station address.

• LOG_DSAP-(IEEE 802.3) Change destination service access point.

• LOG _ CONTROL-(IEEE 802.3; requires super-user capability)
Override Unnumbered Information control field of IEEE 802.3 header.

The first four commands, LOG TYPE FIELD, LOG SSAP,
LOG_DEST_ADDR, and LOG_DSAP, are described-in Chapter 2, "Using
LLA" Refer to that chapter for information on these commands. The
remaining command, LOG_CONTROL, is described below.

Note The LOG_CONTROL command is only applicable to the IEEE
802.3 protocol and conforms to its specification. Refer to the
IEEE 802.3 specification for detailed information about the UI,
XID and TEST control fields mentioned below.

LOG CONTROL Command
You can call LOG_CONTROL after you have logged a ssap. (See
LOG _ SSAP in the Chapter 2, "Using LLA") The unnumbered information
(UI) control field of the IEEE 802.3 header is the default used for normal
communication. With super-user capability, you can override this default with
XID CONTROL or TEST CONTROL. - -
• XID control field: Any data written to the network device is ignored. An

XID request packet is transmitted instead and any network responses will
be returned through a subsequent read(2) call.

• TEST control field: Data written to the network device causes a TEST
packet containing the data to be transmitted. Any network responses will

3-10 Network I/O Control Commands

be returned through a subsequent read(2) call.

Initialization of a rg for the LOG_CONTROL command is:

arg.reqtype LOG CONTROL

arg.vtype INTEGERTYPE

arg.value.i UI CONTROL

XID CONTROL

TEST CONTROL

for normal data frame (default) =
3

for XID frame = OxBF

for TEST frame = OxF3

Network I/O Control Commands 3-11

Resetting an Interface
The NETCTRL command RESET_INTERFACE is provided to reset the
EthernetlIEEE 802.3 device. This command forces a complete hardware
self-test. It also resets all interface statistics counters. The
RESET_INTERFACE command requires super-user capability.

Note A reset can drop packets or impair any currently active network
connections at the local computer.

RESET INTERFACE Command
Initialization of arg for the RESET_INTERFACE command is:

arg.reqtype = RESET INTERFACE

3-12 Network I/O Control Commands

Managing Broadcast Packets
Two NETCTRL commands, ENABLE BROADCAST and
DISABLE_BROADCAST, are provided to control the reception of broadcast
packets. Broadcast packets are packets with the destination address field
containing all l's. These commands require super-user capability.

ENABLE BROADCAST Command
ENABLE_BROADCAST allows broadcast packets to be received by the local
network device.

Initialization of a rg for the ENABLE_BROADCAST command is:

arg.reqtype = ENABLE_BROADCAST

DISABLE BROADCAST Command
DISABLE_BROADCAST prohibits broadcast packets from being received.

Caution Use of the DISABLE_BROADCAST command may be
catastrophic to an active HP network.

Initialization of arg for the DISABLE_BROADCAST command is:

arg.reqtype = DISABLE BROADCAST

Network I/O Control Commands 3-13

Managing Multicast Packets
Two NETCTRL commands, ADD MULTICAST and
DELETE_MULTICAST, are proVided to control multicast packets. Both
commands require super-user capability.

ADD MULTICAST Command
The ADD_MULTICAST command adds the multicast address specified in
arg. va 1 ue. s to the device's list of accepted multicast addresses. This
multicast address list is maintained inside the LAN card. If a packet is
received with a multicast destination address, this address is compared to the
receiving device's current list. If the address is not in the list, the packet is
discarded. This operation is performed by the LAN card, not by the device
driver.

Initialization of a rg for the ADD_MULTICAST command is:

arg.reqtype
arg.vtype
arg.value.s

ADD MULTICAST
length of a rg . val u e . s = 6

multicast address

A multicast address is defined by the user and is not tied to the physical
station address of a computer. After such address is defined, any node in the
network that has added this address to its device multicast address list (by
issuing the ADD_MULTICAST command) will receive any packet with its
destination field equal to this multicast address. A valid multicast address is a
48-bit value with the least significant bit turned on to indicate a group address.
Up to 16 multicast addresses can be supported simultaneously.

The following errors can be returned:

• EPERM - Indicates that the application is not running under super-user
ca pabili ties.

• EINV AL - Indicates that the multicast list is full; an improper address size
was used; the group address bit was not set (not a multicast address); or the
specified address is already in the list.

3-14 Network I/O Control Commands

DELETE MULTICAST Command
The DELETE MULTICAST command removes the multicast address
specified in a rg . val ue . s from the device's current list of accepted multicast
addresses.

Initialization of arg for the DELETE_MULTICAST command is:

arg.reqtype
arg.vtype
arg.value.s

DELETE MULTICAST
length of a rg . val u e . s = 6

multicast address

Caution Deletion of an HP special multicast address may be
catastrophic to an active HP network. These addresses are:
Ox090009000001,Ox090009000002.

A valid multicast address is a 48-bit value with the least significant bit turned
on to indicate a group address.

The following errors can be returned:

• EPERM-Indicates that the application is not running under super-user
capabilities.

• EINV AL-Indicates that the multicast list is empty; an improper address
size was specified; the group address bit was not set (not a multicast
address); or the specified address is not in the list.

You can use net_aton(3n) to translate the ASCII form of the multicast
address into its network-internal form. (The net_aton(3n) routine is described
in Chapter 2, "Using LLA")

Network I/O Control Commands 3-15

4

LLA Examples

Note These programs are provided only as examples of LLA usage and
are not Hewlett-Packard supported products.

The source code for the example programs is located on your system in the
directory /usr/netdemo/LLA.

There are two examples with the following files:

• File transfer

• nserver.c

• nget.c

• nput.c

• ncopy.h

• Network interface statistics report

• nstatus.c

LLA Examples ~1

File Transfer Program
The file transfer example consists of the three programs listed in the
introduction of this chapter.

Each program must be compiled with the file ncopy.h.

nselVer.c

nget.c

nput.c

A file server program. Find out the station address of the
Ian card for the computer on which you plan to run this
program. You can do this by running Ian display portion of
the landiag (1M) command or the LANDAD portion of the
Online Diagnostic Subsystem (Series 800 only), or by
referring to the Network Map for your network. Once you
know the station address, compile nselVer.c and run it. You
can then run the requester programs.

A requester program nget.c asks nselVer.c to get a file, which
is displayed on stdout. To use nget.c, you must know the
remote file name and the station address of the computer on
which nserver.c is running.

A requester program nput.c asks nserver.c to put a file in the
server's current working directory, taking input from nput.c's
stdin. To use nput.c, you must know the remote file name
and the station address of the computer on which nserver.c is
running. If you use the wrong station address, nput.c will
time out.

If necessary, all three programs can be run on the same computer. If you
choose to put nserver.c on the same computer as nput.c and/or nget.c, run
nserver in the background and redirect its output to a file.

Figure 4-1 and Figure 4-2 show the communication between these processes
in chronological order.

Source code for the sample programs follows Figures 4-1 and 4-2.

4-2 LLA Examples

Follow the procedure below to run the example programs.

1. Run landiag on the machine on which you are going to run the server
program. Select 1 an from the first menu and di spl ay from the second
menu, and note the station address to be used when running the nget and
n put programs.

2. Move to the directory containing the LLA example programs.

cd /usr/netdemo/LLA

3. Start the file server program .

. /nserver > /tmp/serverlog &

4. Run the nget program to get file /etc/passwd from the server .

. /nget /etc/passwd Ox08000900abcd I more

5. Alternatively, run the nput program to put the local file /etc/passwd on
the server as /tmp/remfi 1 e.

cat /etc/passwd I./nput /tmp/remfile Ox08000900abcd

LLA Examples ~3

SERVER Cnserved ,
Receive a packet
Decode and open the requested

file for reading
Log cHent's address
Send reply to client

· · Receive a packet
becooe and read from opened file
Pend reply + data to client

·

CUENT 6'1ge1)

Send an 'open' request packet

I
Receive reply to 'open' request

I
Receive reply to 'read' request

+ data
Write data to local file L ___ ~ ,

Receive a packet
Decode and read from opened file
EOF detected, read length = 0
Send reply to client

,
Receive a packet
Decode and close the opened fie
Send reply to client

Send a 'read' request packet

I
Receive reply to 'read' request
Detect EOF
Send a 'close' request packet

I
Receive reply to 'close' request
Close LAN device file

Figure 4-1. nserver nget

4-4 LLA Examples

Tme

LOOP

SERVER (nserver)

Receive a packet
Decode and open the requested

file for reading

CLIENT (nput)

Send an 'open' request packet

Log client's address
Send reply to client l

• - - - ••••••••• - _ •• _ •••• - - _ •• - ••••• _ ••• _ ••• R·e·c·~~; ·r~piyt~· '-;p;;'·r·e·q·u·e·;t~

Receive a packet
Decode and write data to opened file
Send reply to client

Read data from standard input
Send an 'write' request packet

containing data

Receive reply to 'write' request _ ••••••• _ ••• _ •• _ •••• _ ••••••• _ •••••• _ ••••••• _ •• _____________________ J

Receive a packet
Decode and close the opened file
Send reply to client

Read data from standard input
EOF encountered, read length = 0
Send a 'close' request packet

l
Receive reply to 'close' request
Close LAN device file

Figure 4-2. nserver nput

Time

LOOP

LLA Examples 4-5

/**
* ncopy.h *
* *
* This is the include file needed for the example file transfer *
* programs: nget, nput, and nserver. *
**/

/*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*/

The following is the packet format for the transfers

+--------+--------+--------+--------+
I id I
+--------+--------+--------+--------+
I mode I len I
+--------+--------+--------+--------+
I data [0] I data[l] I data [2] I data [3] I

+--------+--------+--------+--------+
I data [4] I data [5] I data [6] I data [7] I

+--------+--------+--------+--------+
I I

+--------+--------+--------+--------+

id
mode

len

data

integer (four bytes) describing the file
describes the action to be performed (if request)
describe the result of the action (if reply)
(2 byte integer)
length of the data field
(2 byte integer)
the data to be transferred
or the filename (if RDOPEN or WROPEN).

#define MAX DATA 1400

1*
*
*
*

The following structure is a structure overlay for the packet
format described above. This structure is dependent on the
compiler to generate the alignment as shown above.

*/

struct packet format {
int id;
short mode;
short len;

/* RDOPEN,WROPEN,READ,WRITE,CLOSE,OK,ERR */
/* length of data */
/* or length of request READ */

char data[MAXDATA];
};

#define OVHEAD_SIZE
#define PACKET_SIZE

4-6 LLA Examples

(sizeof(struct packet format) - MAXDATA)
sizeof(struct packet_format)

/*
* The following are enumerated types for above 'mode' field.
*/

#define RDOPEN 0 /* possible REQUEST modes */
#define WROPEN 1
#define READ 2
#define WRITE 3
#define CLOSE 4

#define OK 5 /* possible REPLY modes */
#define ERR 6

/*
*
*

The link level access parameters.

*
*

The requester SAP and the server SAP are different so that
the server and the requester can both be active at the same
time.

*/

#define REQ_SAP
#define SER_SAP
#define TIMEOUT_VALUE

Ox10
Ox12
10000

static char Uni_id[] = "@(#)1.3";

/* SAP for requester */
/* SAP for server */
/* allow 10 seconds for reply */

LLA Examples ~7

/**
* nserver.c -- this program handles requests from nget and nput *
* programs. *
* *
* This program will run until stopped by a signal. *
* It will log requests to stdout. *
**/

#include <stdio.h>
#include <fcnt1.h>
#include <errno.h>
#include <netio.h>

#include "ncopy.h"

extern char *net_aton();
extern errno;

/*--
* Algorithm:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*

check arguments.
set up connection:

Open device fi le
log SSAP/DSAP

REPEAT
Read(request packet)
CASE packet type OF

OPEN:

READ:

WRITE:

CLOSE:

if (cannot open)
mode ERR;

else
mode OK;
id = open file descriptor;

if (cannot read)
mode ERR;

else
mode
data

OK;
read data;

if (cannot write)
mode ERR;

else
mode OK;

if (cannot close)
mode ERR;

else
mode OK;

log destination address

4-8 LLA Examples

*
*
*

Write(reply packet)
FOREVER

--/

main argc, argv
int argc;
char *argv [] ;
{

struct packet_format rxbuf, txbuf;
int f;
int res;
struct fis arg;
short size;

/*--
* rxbuf -- buffer to receive
* txbuf -- buffer to transmit
* f -- device file
* res -- result of system calls
* arg -- used for ioctl calls
* size -- size of the reply packet
--/

if (argc != 1) {

}

fprintf(stderr, "Usage: %s\n", argv[O]);
exit(_LINE_) ;

/*--
* Set up the connection
--/

1*

f = open("/devllanO", O_RDWR);
if (f < 0) {

}

fprintf(stderr, "Cannot open, f = %d\n", f);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_);

* Setup the local/remote SAP
*/

arg.reqtype = LOG_SSAP;
arg.vtype = INTEGERTYPE;
arg.value.i = SER SAP;
res = ioctl(f, NETCTRL, &arg);

if (res != 0) {
fprintf(stderr, "Cannot control(lOG SSAP), res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

LLAExamples 4-9

}

arg.reqtype = LOG_DSAP;
arg.vtype = INTEGERTYPE;
arg.value.i = REQ SAP;
res = ioctl(f, NETCTRL, &arg);

if (res ! = 0) {

}

fprintf(stderr, "Cannot control (LOG_DSAP), res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

/*--
* LOOP
* Read(request)
* service request
* Write(reply)
* FOREVER
--/

while (1) {
res = read(f, &rxbuf, PACKET SIZE);

if (res <= 0) { -

}

fprintf(stderr, "Cannot read, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

switch (rxbuf.mode)
{
case WROPEN:

printf("Servicing open for write: %s\n", rxbuf.data);
res = open(rxbuf.data, O_WRONLYIO_CREAT, 0644);
if (res < 0) {

printf(" cannot open, res = %d\n", res);
printf(" errno = %d\n", errno);
txbuf.mode = ERR;

} else {

}

printf(" returned file descriptor %d\n", res);
txbuf.mode = OK;

txbuf. i d = res;
txbuf. len = 0;
size = OVHEAD_SIZE;
break;

case RDOPEN:
printf("Servicing open for read: %s\n", rxbuf.data);
res = open{ rxbuf.data, O_RDONLY);
if (res < 0) {

printf(" cannot open, res = %d\n", res);
printf(" errno = %d\n", errno);
txbuf.mode = ERR;

4-10 LLA Examples

case READ:

} else {

}

printf(" returned file descriptor %d\n", res };
txbuf.mode = OK;

txbuf. id = res;
txbuf. len = 0;
size = OVHEAD_SIZE;
break;

printf("Servicing read: %d\n", rxbuf. id };
res = read(rxbuf.id, txbuf.data, rxbuf. len };
if (res < O) {

printf(" cannot read, res = %d\n", res};
printf(" errno = %d\n", errno };
txbuf.mode = ERR;
txbuf. len = 0;
size = OVHEAD SIZE;

} else { -

}

printf(" read %d bytes\n", res};
txbuf.mode = OK;
txbuf. len = res;
size = OVHEAD_SIZE + res;

txbuf.id = rxbuf.id;
break;

case WRITE:

case CLOSE:

printf("Servicing write: %d\n", rxbuf.id };
res = write(rxbuf.id, rxbuf.data, rxbuf. len };
if (res < O) {

printf(" cannot write, res = %d\n", res};
printf(" errno = %d\nlt, errno };
txbuf.mode = ERR;

} else {

}

printf(" write %d by tes\n" , res};
txbuf.mode = OK;

txbuf. len = res;
txbuf.id = rxbuf.id;
size = OVHEAD_SIZE;
break;

printf("Servicing close: %d\n", rxbuf.id };
res = close(rxbuf.id);
if (res ! = O) {

printf(1t cannot close, res = %d\n", res};
printf(1t errno = %d\n", errno };
txbuf.mode = ERR;

} else {

LLA Examples 4-11

/*
*
*
*/

/*
*
*/

}

}

printf(" closed file\n");
txbuf.mode = OK;

txbuf. len = 0;
txbuf. id = -1;
size = OVHEAD_SIZE;
break;

default:

}

printf("Unrecognized request %d\n", rxbuf.mode);
txbuf.mode = ERR;
txbuf. len = 0;
txbuf. i d = -1;
size = OVHEAD_SIZE;
break;

Setup the destination address by reading source address of the
request packet.

arg.reqtype = FRAME_HEADER;
res = ioctl(f, NETSTAT, &arg);

if (res != 0) {
fprintf(stderr, "Cannot status(FRAME_HEADER}, res = %d\n", res);

fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

}

arg.reqtype = LOG_DEST_ADDR;
arg.vtype = 6;
copy(arg.value.s, &arg.value.s[6] , 6);
res = ioctl(f, NETCTRL, &arg);

if (res != 0) {
fprintf(stderr, "Cannot control(LOG_DEST_ADDR), res = %d\n", res);

fprintf(stderr,"Errno = %d\n", errno);
exit(_LINE_) ;

}

write reply packet

res = write(f, &txbuf, size);
if (res <= 0) {

}

fprintf(stderr, "Cannot write, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

4-12 LLA Examples

}
/*
* copy exactly 'num' bytes
*/

copy(to, from, num }
register char *to;
register char *from;
register int num;
{

}

while(num-- > 0
*to++ = *from++;

static char Uni_id[] = "@(#}1.3";

LLA Examples 4-13

/**
* nget.c -- get a file from the remote machine *
*
* This program asks for a file to be transferred over the network.
* The required parameters are the name of the remote file and the
* link address of the remote machine.
* The remote machine must be running the "nserver" program.
* The file will be printed to stdout, which can be redirected by
* the shell.

*
*
*
*
*
*
*

**/

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <netio.h>

#include "ncopy.h"

extern char *net_aton();
extern errno;

/*--
* Algorithm:
*
* check arguments.
* set up connection:
* Open device file
* log SSAP/DSAP
* log destination address
* log timeout value
* Write(open packet request)
* Read(reply to open packet)
* REPEAT
* Write(read packet request)
* Read(reply to read packet)
* Write data to output
* UNTIL data length received != data length transmitted
* Write(close packet request)
* Read(reply to close packet)
* tear down the connection:
* Close device file
*
--/

main argc, argv
int argc;
char *argv [] ;
{

struct packet_format rxbuf, txbuf;
int f;
int res;
struct fis arg;

4-14 LLA Examples

/*--
* rxbuf -- buffer to receive
* txbuf -- buffer to transmit
* f -- device file
* res -- result of system calls
* arg -- used for ioctl calls
--/

if (argc != 3) {
fprintf(stderr, "Usage: %s remote-file remote-addr\n", argv[O]);
exit(_LINE_) ;

}

/*--
* Set up the connection
--/

1*

f = open("/dev/lanO", O_RDWR);
if (f < 0) {

}

fprintf(stderr, "Cannot open, f = %d\n", f);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

* Setup the local/remote SAP
*/

arg.reqtype = LOG_SSAP;
arg.vtype = INTEGERTYPE;
arg.value.i = REQ_SAP;

res = ioctl(f, NETCTRL, &arg);
if (res != 0) {

fprintf(stderr, "Cannot control(LOG SSAP), res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);

/*

exit{_LINE_) ;
}

arg.reqtype = LOG_DSAP;
arg.vtype = INTEGERTYPE;
arg.value.i = SER SAP;
res = ioctl(f, NETCTRL, &arg);

if (res != 0) {

}

fprintf(stderr, "Cannot control(LOG DSAP), res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

* Setup the destination address

LLA Examples 4-15

*/

/*

arg.reqtype = LOG_DEST_ADDR;
arg.vtype = 6;
net atone arg.value.s, argv[2] , 6);
res-= ioctl(f, NETCTRL, &arg);

if (res != 0) {

}

fprintf(stderr, "Cannot contra l(LOG DEST AODR) , res = %d\n", res);
fprintf(stderr, "Errno = %d\n", erT-nO);-
exit (_LINE_) ;

* Setup the timeout value.
*
*
*
*/

If a timeout occurs in a subsequent read, then this program
w ill be aborted. In th i s case the remote nserver program .
will need to be stopped and restarted.

arg.reqtype = LOG_READ_TIMEOUT;
arg.vtype = INTEGERTYPE;
arg.value.i = TIMEOUT_VALUE;

res = ioctl(f, NETCTRL, &arg);
if (res != 0) {
fprintf(stderr, "Cannot contro 1 (LOG_READ_TIMEOUT), res = %d\n", res);

fprintf(stderr,"Errno = %d\n", errno);
exit(_LINE_} ;

}

/*--
* Network Open
--/

txbuf.mode =RDOPEN;
txbuf. id = 0;
txbuf. len = strlen(argv[l]) + 1; /* add 1 for null terminator */
strcpy(txbuf.data, argv[l]);
res = write(f, &txbuf, txbuf.len+OVHEAD SIZE);

if (res <= 0) { -

}

fprintf(stderr, "Cannot write, res = %d\n", res};
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

res = read(f, &rxbuf, PACKET SIZE);
if (res <= O) { -

}

fprintf(stderr, "Cannot read, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

if (rxbuf.mode != OK) {

~16 LLA Examples

}

/*

fprintf(stderr, "Remote open problem\n");
exit(_LINE_) ;

* Set up transmit frames
*/

txbuf.mode = READ;
txbuf.id = rxbuf.id;

/*-------------~--------------------~-------------------------
* REPEAT
* Network read
* write(stdout)
* UNTIL EOF(stdin)
--/

do {
txbuf. len = MAXDATA;
res = write(f, &txbuf, OVHEAD_SIZE);

if (res <= 0) {
fprintf(stderr, "Cannot write, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

}

res = read(f, &rxbuf, PACKET SIZE);
if (res <= 0) { -

}

fprintf(stderr, "Cannot read, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

if (rxbuf.mode != OK) {

}

fprintf(stderr, "Remote read problem\n");
exit (_LINE_) ;

if (rxbuf. len> 0) {
res = write(1, rxbuf.data, rxbuf. len);

if (res < 0) {
fprintf(stderr, "Cannot write stdout, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit (_LINE_) ;

}
}

} while rxbuf. len> 0);

LLA Examples ~17

/*--
* Network Close
--/

txbuf.mode = CLOSE;
txbuf. len = 0;
res = write(f, &txbuf, txbuf.len+OVHEAD_SIZE);

if (res <= 0) {

}

fprintf(stderr, "Cannot write, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

res = read(f, &rxbuf, PACKET SIZE);
if (res <= 0) { -

}

fprintf(stderr, "Cannot read, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

if (rxbuf.mode != OK) {
fprintf(stderr, "Remote close problem\n");
exit (_LINE_) ;

/*--

}

* Tear down the connection
--/

res = close(f);
if (res ! = 0) {

}

exit(O);

fprintf(stderr, "Cannot close, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

static char Uni_id[] = "@(#)1.3";

4-18 LLA Examples

/**
* nput.c -- put a file on the remote system. *
* *
* This program puts a new file on the remote system. *
* The input to the remote file will be read from stdin. which can be *
* redirected from the shell. *
* The required parameters are the name of the remote file and the
* link address of the remote machine.

*
*

* The remote machine must be running the "nserver" program. *
**/

#include <stdio.h>
#include <fcntl.h>
#include <errno.h>
#include <netio.h>

#include "ncopy.h"

extern char *net_aton();
extern errno;

/*--
* Algorithm:
*
* check arguments.
* set up connection:
* Open device file
* log SSAP/DSAP
* log destination address
* log timeout
* Write(open packet request)
* Read(reply to open packet)
* REPEAT
* Read data from input
* Write(write packet request)
* Read(reply to write packet)
* UNTIL eof(input)
* Write(close packet request)
* Read(reply to close packet)
* tear down the connection:
* Close device file
*
--/

main argc. argv
int argc;
char *argv [] ;
{

struct packet_format rxbuf. txbuf;
int f;
int res;
struct fis arg;
int morej

LLA Examples 4-19

/*--
* rxbuf -- buffer to receive
* txbuf -- buffer to transmit
* f -- device file
* res -- result of system calls
* arg -- used for ioctl calls
* more -- boolean if not at EOF
--/

if (argc != 3) {

}

fprintf(stderr, "Usage: %s remote-file remote-addr\n", argv[O]);
exit(_LINE_) ;

/*--
* Set up the connection
--/

1*

f = open("/dev/lanO", O_RDWR);
if (f < 0) {

}

fprintf(stderr, "Cannot open, f = %d\n", f);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

* Setup the local/remote SAP
*/

/*

arg.reqtype = LOG_SSAP;
arg.vtype = INTEGERTYPE;
arg.value.i = REQ SAP;
res = ioctl(f, NETCTRL, &arg);

if (res != 0) {

}

fprintf(stderr, "Cannot control(LOG SSAP), res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LlNE_) ;

arg.reqtype = LOG_DSAP;
arg.vtype = INTEGERTYPE;
arg.value.i = SER_SAP;
res = ioctl(f, NETCTRL, &arg);

if (res ! = 0) {

}

fprintf(stderr, "Cannot control(LOG DSAP), res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit (_LINE_) ;

4-20 LLA Examples

* Setup the destination address
*/

arg.reqtype = LOG_DEST_ADDR;
arg.vtype = 6;
net aton(arg.va1ue.s, argv[2], 6);
res-= ioct1(f, NETCTRL; &arg);

if (res != 0) {
fprintf(stderr, "Cannot contro1(LOG DEST ADDR), res = %d\n", res);
fprintf(stderr, "Errno = %d\n", err;;-o);-
exit(_LINE_) ;

}

/*
* Setup the timeout value.
* If a timeout occurs in a subsequent read, then this program
* w ill be aborted. In th is case the remote nserver prog'ram
* will need to be stopped and restarted.
*/

arg.reqtype = LOG_READ_TIMEOUT;
arg.vtype = INTEGERTYPE;
arg.va1ue.i = TIMEOUT VALUE;
res = ioctl(f, NETCTRL, &arg);

if (res != 0) {
fprintf(stderr,"Cannot control{LOG_READ_TIMEOUT}, res = %d\n", res);
fprintf(stderr,"Errno = %d\n", errno);
exit(_LINE_) ;

}

/*--
* Network Open
--/

txbuf.mode = WROPEN;
txbuf. id = 0;
txbuf. len = str1en(argv[1]) + 1; /* add 1 for null terminator */
strcpy(txbuf.data, argv[l]);
res = write(f, &txbuf, txbuf.1en+OVHEAD SIZE);

if (res <= 0) { -

}

fprintf(stderr, "Cannot write, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

res = read(f, &rxbuf, PACKET SIZE);
if (res <= 0) { -

fprintf(stderr, "Cannot read, res = %d\n", res);

LLA Examples 4-21

/*

}

fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

if (rxbuf.mode != OK) {
fprintf(stderr, "Remote open problem\n");
exit(_LINE_) ;

* Set up transmit frames
*/

txbuf.mode = WRITE;
txbuf.id = rxbuf.id;

/*--
* LOOP
* read(stdin)
* EXIT IF EOF(stdin)
* Network write
* FOREVER
--/

whi le (1) {
res = read(O. txbuf.data, MAX DATA);

if (res < 0) {

}

fprintf(stderr, "Cannot read stdin, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

if (res == 0) break; /* loop exit at eof(stdin) */

txbuf. len = res;
res = write(f, &txbuf, res+OVHEAD_SIZE);

if (res <= 0) {

}

fprintf(stderr, "Cannot write, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

res = read(f, &rxbuf, PACKET SIZE);
if (res <= 0) { -

fprintf(stderr, "Cannot read, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

4-22 LLA Examples

}

}
if (rxbuf.mode != OK) {

}

fprintf(stderr, "Remote write problem\n");
exit(_LINE_);

/*--
* Network Close
--/

txbuf.mode = CLOSE;
txbuf. len = 0;
res = write(f, &txbuf, txbuf.len+OVHEAD_SIZE);

if (res <= 0) {

}

fprintf(stderr, "Cannot write, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit (_LINE_) ;

res = read{ f, &rxbuf, PACKET SIZE);
if (res <= 0) { -

}

fprintf{stderr, "Cannot read, res = %d\n", res);
fprintf(stderr, "Errno = %d\n", errno);
exit(_LINE_) ;

if (rxbuf.mode != OK) {

}

fprintf(stderr, "Remote close problem\n");
exit(_LINE_) ;

/*--

}

* Tear down the connection
--/

res = close{ f);
if (res ! = 0) {

}

exit(O);

fprintf(stderr, "Cannot close, res = %d\n", res);
fprintf{stderr, "Errno = %d\n", errno);
exit{_LINE_) ;

LLA Examples 4-23

Network Interface Statistics Report
Program
This example program, nstatus.c, dumps the status of the driver for a Series
600/800 computer. The source code follows.
/***
* -------------------------- nstatus.c ------------------ *
* This is an example program which dumps out the status of the *
* lan driver. *
**/

'include <stdio.h>
'include <fcntl.h>
'include <netio.h>

extern int errno;

int mapD = {
RX_FRAME_COUNT,
TX_FRAME_COUNT,
UNDEL_RX_FRAMES,
UNTRANS_FRAMES,
RX_BAD_CRC_FRAMES,
ONE_COLLISION,
MORE_COLLISIONS,
EXCESS_RETRIES,
DEFERRED,
CARRIER_LOST,
NO_HEARTBEAT,
ALIGNMENT_ERRORS,
LATE_COLLISIONS,
MISSED_FRAMES,
UNKNOWN_PROTOCOL,
BAD_CONTROL_FIELD,
NO_TX_SPACE,
LITTLE_RX_SPACE,
TOR,

} ;

RX_XID,
RX_TEST,
RX_SPECIAL_DROPPED,
MULTICAST_ADDR_LIST,
I LLEGAL_FRAME_SIZE

'define NUM_STAT

char *descript[] = {
"RX_FRAME_COUNT",
"TX_FRAME_COUNT",
"UNDEL_RX_FRAMES",

4-24 LLA Exampfes

/* system errno */

(sizeof(map) / sizeof(int))

};

"UNTRANS_FRAMES",
"RX_BAD_CRC_FRAMES",
"ONE_COLLISION",
"MORE_COLLISIONS" ,
"EXCESS_RETRIES",
"DEFERRED",
"CARRIER_LOST",
"NO_HEARTBEAT",
"ALIGNMENT_ERRORS" ,
"LATE_COLLISIONS" ,
"MISSED_FRAMES",
"UNKNOWN_PROTOCOL",
"BAD_CONTROL_FIELD",
"NO_TX_SPACE",
"LI TTL E_RX_SPACE " ,
"TOR",
"RX_XID",
"RX_TEST",
"RX SPECIAL DROPPED",
"MUL TICAST}\DDR_LIST",
"I LLEGAL_FRAME_SIZE"

char *desc_status[] = {
"INACTIVE" ,
"INITIALIZING" ,
"ACTIVE" ,
"FAILED"

};

#define UNKNOWN ((FAILED)+I)

main(argc, argv
int argc;
char *argv [] ;
{

int f;
int res;
int stat;
struct fis arg;
char addr [15] ;

/* file descriptor */
/* result of ioctl */
/* index for the array map */
/* used to pass parameters to driver */
/* used to hold local address */

1*
* check the arguments to the program
*/

if (argc != 2) {

}

fprintf(stderr, "Usage: %s device-file\n", argv[O]);
exit(-1);

f = open(argv[I], O_RDWR);
if (f < 0) {

fprintf(stderr, "Cannot open device file: %s\n", argv[I]);

LLA Examples 4-25

}

fprintf(stderr, "
exit(-1);

errno = %d\n", errno);

/*
* print out the local address
*/

arg.reqtype = LOCAL ADDRESS;
res = ioctl(f, NETSTAT, &arg);
if (res ! = 0) {

fprintf(stderr, "Cannot read local address\n");
fprintf(stderr," errno = %d\n", errno);
exit(-1);

}

if (net ntoa(addr, arg.value.s, 6) == NULL) {
fprintf(stderr, "Error in converting address\n");
exit (-1) ;

}

printf("%30s : %s\n", "LOCAL_ADDRESS", addr);

/*
* print out the state of the card
*/

arg.reqtype = DEVICE STATUS;
res = ioctl(f, NETSTAT, &arg);
if (res ! = 0) {

fprintf(stderr, "Cannot read device status\n");
fprintf(stderr," errno = %d\n", errno);
exit(-1);

}

printf("%30s : %s\n", "DEVICE_STATUS", desc_status[arg.value.i]);
/*

}

* print out all the statistics
*/

for (stat = 0; stat < NUM STAT; stat++) {
arg.reqtype = map[stat];
res = ioctl(f, NETSTAT, &arg);
if (res != 0) {

fprintf(stderr, "Cannot read statistic %s\n", descript[stat]);
fprintf(stderr," errno = %d\n", errno);
exit (-1);

}
printf("%30s : %d\n", descript[stat], arg.value.i);

}
exit(O);

4-26 LLA Examples

A

Implementation Differences

This appendix compares the HP 9000 Series 600/800 and HP 9000 Series
300/400 LLA implementations. You should refer to this appendix if you plan
to port applications written for the Series 300/400 to the Series 600/800
programming environment.

Certain network I/O control commands are unique to either the Series
600/800 or Series 300/400. The following Series 600/800 commands are Dot
supported on the Series 300/400:

• NO TX SPACE

• LIlTLE RX SPACE

• TDR

• RX XID

• RX TEST

• RX SPECIAL DROPPED - -
• MULTICAST ADDR LIST - -
• ILLEGAL FRAME SIZE - -
The following Series 600/800 commands are Dot supported on the Series 700:

• ILLEGAL FRAME SIZE - -
• NO TX SPACE

• LIlTLE RX SPACE

Implementation Differences A-1

B

LLA Layer 2 Protocols

This appendix contains diagrams and text that explain the following Ethernet
and IEEE 802.3 protocol components:

• Ethernet Frame Structure.

• Ethernet Destination Address Structure.

• IEEE 802.3 Frame Structure.

• IEEE 802.3 Address Field Structures.

• Ethernet and IEEE 802.3 Packet Comparison.

LLA Layer 2 Protocols B-1

Ethernet Frame Structure
The Ethernet packet contains the following information:

LSB

First
Bit
Transmitted

Preamble

Destination Address

Source Address

Type

Data

CRC

2

8 bytes

6 bytes

6 bytes

2 bytes

46 to 1200 bytes

4 bytes

MSB

8

Last

~ Bit
Transmitted

First

Last

Figure 8-1. Ethernet Frame Structure

Transmit

• Preamble. The preamble is a 64-bit (8 byte) field that contains a
synchronization pattern consisting of alternating ones and zeros and ending
with two consecutive ones. After synchronization is established, the
preamble is used to locate the first bit of the packet. The preamble is
generated by the LAN interface card.

• Destination Address. The destination address field is a 48-bit (6 byte) field
that specifies the station or stations to which the packet should be sent.
Each station examines this field to determine whether it should accept the
packet.

• Source Address. The source address field is a 48-bit (6 byte) field that
contains the unique address of the station that is transmitting the packet.

• Type field. The type field is 16-bit (2 byte) field that identifies the
higher-level protocol associated with the packet. It is interpreted at the
data link level.

B-2 LLA Layer 2 Protocols

• Data Field. The data field contains 46 to 1500 bytes. Each octet (8-bit
field) contains any arbitrary sequence of values. The data field is the
information received from Layer 3 (Network Layer). The information, or
packet, received from the Layer 3 is broken into frames of information of
46 to 1500 bytes by Layer 2.

• CRC Field. The Cyclic Redundancy Check (CRC) field is a 32-bit error
checking field. The CRC is generated based on the destination address,
type and data fields.

The packet is transmitted from the first byte of the preamble to the last byte
of the CRC. Each byte is transmitted least significant bit first to most
significant bit last.

Ethernet Destination Address
The destination address field in the Ethernet frame is a 48-bit (6 byte) address
that contains the station address of the EthernetlIEEE 802.3 interface card to
which the packet is directed.

LSB

IIIGj
48 bits

IIG = 0 Individual Address

IIG = 1 Group Address

All 1s Broadcast Address

MSB

Figure B-2. Ethernet Destination Address

The first bit (Bit 1) of the destination address indicates the type of address. If
it is set to zero, the field contains the unique address of one of the stations. If
it is set to one, the field specifies a logical group of stations. If the address
field contains all ones, the packet is broadcast to all stations.

LLA Layer 2 Protocols B-3

IEEE 802.3 Frame Structure
The 802.3 packet is very similar to the Ethernet packet. It contains the
following information:

Preamble

SFD

Destination Address

Source Address

Length

LLC (802.2)

Pad (if necessary)

CRC

LSB

I 0 I 1 I 2 I 3

First
Bit
Transmitted

I 4

7 bytes

1 byte Transmit

6 bytes First

6 bytes

2 bytes

46 to 1500 bytes

variable

4 bytes Last

MSB

Last
Bit
Transmitted

Figure 8-3. IEEE 802.3 Frame Structure

• Preamble. The preamble field consists of seven bytes of alternating ones
and zeros. After synchronization is established, the preamble is used to
locate the first bit of the packet. The preamble is generated by the LAN
interface card.

• Start Frame Delimeter (SFD). The SFD is the 8-bit sequence 10101011
that is the same as the eighth byte of the Ethernet preamble. Together the
802.3 preamble and the SFD are identical to the Ethernet preamble.

• Destination Address. The 802.3 protocol gives the manufacturer the
option of implementing either 16 or 48 bit addresses. HP implements the
48-bit (6 byte) address to be compatible with Ethernet's 48-bit (6 byte)
address. The destination address specifies the station or stations to which a
packet should be sent. Each station examines this field to determine
whether or not it should accept the packet.

8-4 LLA Layer 2 Protocols

• Source Address. The source address field is a 48-bit (6 byte) field that
contains the unique address of the station that is transmitting the packet.

• Length Field. The 2-byte length field is equal to the number of bytes in the
LLC field plus the number of bytes in the pad field. If the LLC is less than
46 bytes, then the size of the pad field is 46 minus the size of the LLC. The
LLC plus pad must bea minimum of 46 bytes, but no greater than 1500
bytes.

• LLC Field. The LLC field contains the 802.2 packet that becomes part of .
the 802.3 packet.

• Pad Field. The LLC and pad fields must be between 46 and 1500 bytes in
length. If the data is not a minimum of 43 bytes, the field is padded with
undefined characters or groups of bytes. The pad is automatically stripped
off by the LAN interface card.

• CRC Field .. The Cyclic Redundancy Check (CRC) field is a 32-bit error
checking field. The CRC is generated based on the destination address,
source address, type and data fields.

IEEE 802.3 Address Field Structures
The source and destination address fields of the IEEE 802.3 contain 48 bits (6
bytes) each. The source address is the address of the station sending the
packet; the destination address is the address of the station to which the
packet is directed.

IIG UPC/L 22 Bit Manuf. Address 24 Bit Address

IIG = 0 Individual Address

I/G = 1 Group Address

UPC/L = 0 Globally Administered Address

UPC/L = 1 Locally Administered Address

Figure 8-4. IEEE 802.3 Address Fields

LLA Layer 2 Protocols 8-5

The first bit (least significant bit) of the first byte of the destination address is
used to distinguish between an individual and a group address. A zero
indicates individual access; a one indicates group access. The second bit of the
first byte distinguishes between globally and locally administered addresses. A
zero indicates global and a one indicates local. All ones in the destination
field indicates a broadcast address;· therefore, all active stations will receive the
packet.

LLC Structure
The LLC is the 802.2 packet that becomes part of the 802.3 packet. The
802.2 packet consists of four fields as shown in Figure B-5.

DSAP SSAP

ADDRESS ADDRESS CONTROL

8 bits 8 bits Y bits

DSAP: Destination Service Access Point

SSAP: Source Service Access Point

INFORMATION

8*m*bits

CONTROL: 16 bits for formats using Sequence numbers

8 bits for formats not using Sequence numbers

INFORMATION: Integral number of bytes

Figure 8-5. IEEE 802.3 LLC Packet Structure

The information field is an integral number of bytes in the range of 0 to 1497.
The information field, combined with the control, DSAP and SSAP fields,
must be 3 to 1500 bytes. The control field is 16 bits in length when it is used
for formats using sequence numbers and 8 bits when it is used for formats not
using sequence numbers. Type 1 service uses an 8 bit control field. Since HP
implements Type 1, HP uses the 8-bit control field.

DSAP Address Field

The DSAP field contains a Destination Service Access Point. A DSAP is a
unique user-level address that identifies the higher-level protocol used on the
destination machine.

8-6 LLA Layer 2 Protocols

r First bit delivered to/received from MAC
Least significant bit

L LSB of address

IIG = 0
IIG = 1

Individual OSAP
Group OSAP

XOOOOOOO
X1000000
11111111
00000000
01000000
11000000

Legal DSAP address
Reserved for 802 definition
Global DSAP
Null OSAP (addressed to MAC)
Individual LLC management function
Group LLC management function

Figure 8-6. IEEE 802.3 DSAP Structure

The DSAP address is one byte in length. The least significant bit in the
DSAP identifies whether an individual or a group of individuals should receive
the packet. The remaining seven bits, or the most significant bits of the
DSAP, are the address.

When the DSAP is all ones, broadcasting is enabled. An individual address
indirectly identifies the higher-level protocol implemented on the destination
node. Group DSAPs are reserved for future use.

SSAP Address Field

The SSAP field contains a Source Service Access Point. An SSAP is a unique
user-level address that identifies the higher-level protocol used on the source
machine. The SSAP and the DSAP must be the same in order for two nodes
to communicate.

LLA Layer 2 Protocols 8-7

r First bit delivered to/received from MAC
Least significant bit

ICIA I sis I sis I sis I s I
L LSB of address

C/R = 0 Command

C/R = 1 Response

XOSSSSSS Legal SSAP address
X1SSSSSS Reserved for 802 definition
00000000 Null SSAP (originated from MAC sublayer)

Figure 8-7. IEEE 802.3 SSAP Structure

The SSAP is one byte in length. The least significant bit of the SSAP
indicates whether the packet is a command or a response. All zeroes in the
SSAP indicates a null address.

8-8 LLA Layer 2 Protocols

Ethernet and IEEE 802.3 Packet
Comparison
Figure B-8 illustrates the differences between the Ethernet and IEEE 802.3
packet structures.

ETHERNET IEEE 802.3

PRE PRE
- -

SFD SFD
- -

DEST DEST
- -

SOURCE SOURCE
- -

TYPE LENGTH

DATA

CRC

'-

-
DSAP

SSAP l
CNTL 802.2

DATA

CRC J
Figure 8-S. IEEE S02.3 and Ethernet Packet Comparison

The two types of packets are the same through the preamble, destination and
source fields. The type and length fields are also the same number of bytes in
length (two bytes each). Ethernet uses the type field to convey the protocol
used at higher levels; IEEE 802.3 uses the Destination Service Access Point
(DSAP) for that purpose. Ethernet has no Source Service Access Point
(SSAP) or control fields. Because Ethernet does not have the DSAP, SSAP
or control fields, there are three extra bytes available for data.

Implementing Two Protocols
Since LLA allows implementation of both the IEEE 802.3 and Ethernet
protocols, it must distinguish between the two types of packets. LLA does
this by assuming that all packets are 802.2/3 packets and then checking the
length field. If the value in the length field is less than 1536 bytes, the packet
is processed as an 802.2/3 packet. Otherwise, the packet is assumed to be an
Ethernet packet. Once this assumption is made, the length field is assumed to
be the type field.

LLA Layer 2 Protocols 8-9

c
Error Messages

This appendix lists and describes the error messages produced by Link Level
Access that apply to both the Series 300/400 and Series 600/700/800 HP 9000
computer systems.

If an error occurs, the error value is given in ermo. The values for ermo are
defined in the file /usr/include/sys/ermo.h and in the HP-UX Reference manual
entry for ermo(2).

A list of the error messages, causes, and action to be taken follows. If there is
more than one cause for an error message, each cause is given with a
corresponding numbered action for it.

MESSAGE EBADF

CAUSE A NETCTRL ioctl or write was attempted on a
LLA device that was opened with read only
(0_ RDONL Y) access permission.

ACTION Open the device with readlwrite permission
(O_RDWR).

MESSAGE EBUSY

CAUSE An attempt was made to log a user-level address
tha t is already in use.

ACTION Select a different SSAP or TYPE.

Error Messages C-1

MESSAGE EDESTADDRREQ

CAUSE 1. A read or write call preceded a
LOG TYPE FIELD or LOG SSAP call. - - -

2. A write call preceded a LOG _ DEST _ ADDR
call.

ACTION Establish the LLA connection in proper sequence.

MESSAGE EINTR

CAUSE During a blocked read, the calling process was
delivered a software interrupt prior to receiving a
packet on its inbound queue.

ACTION No action is required.

MESSAGE EINVAL

CAUSE 1. An attempt was made to write or read a negative
number of bytes.

2. An attempt was made to open with a bad oflag
value.

3. LOG _ DSAP call preceded a LOG _ SSAP call.

4. LOG TYPE FIELD call was sent to an IEEE - -
802.3 device.

5. LOG_SSAP, LOG_DSAP, LOG_CONTROL, or
RX_XID, RX_TEST,
RX_SPECIAL_DROPPED,
BAD CONTROL FIELD calls were sent to - -
an Ethernet device.

C-2 Error Messages

(1
~

~

6. An attempt was made to log a user address, and
the SSAP or TYPE was out of range.

7. An attempt was made to change a type_field or
SSAP (user-level address).

8. An improper address format exists in an ioetl call
involving an address.

9. An ADD_MULTICAST call was attempted, but
the supplied address was already in the list.

10. An ADD_MULTICAST call was attempted, but
16 multicast addresses were already logged.
(The list is full.)

11. A DELETE_MULTICAST call was attempted,
but the supplied address was not in the list.

12. A DELETE_MULTICAST call was attempted,
but no multicast addresses have been logged.
(The list is empty.)

13. An ADD MULTICAST or
DELETE_MULTICAST call was attempted,
but the multicast bit was not set in the address
operand.

14. The timeout value passed to
LOG_READ _TIMEOUT was negative.

15. An unknown arg. reqtype.

16. Incorrect arg. vtype.

17. Fildes does not specify an active network I/O
device.

Error Messages C-3

ACTION

C-4 Error Messages

18. An attempt was made to set
LLA SIGNAL MASK with undefined events - -
set in the mask operand.

1. Read and write calls require a message length
greater or equal to zero.

2. Check options flag in open call.

3. A LOG _ SSAP command must be successfully
completed prior to initiating a change of the
DSAP.

4. Invalid command for this protocol.

5. Do not use these calls with an Ethernet device.

6. Refer to proper ranges of SSAP or TYPE given
in manual.

7. After an SSAP or TYPE has been logged, reopen ~
the file to change the SSAP or TYPE.

8. Physical address must be 6-byte entities. Check
value in vtype field.

9. No action is required. Address is already in list.

10. A multicast address must be deleted before a
different one can be inserted.

11. No action is required. Address is not in list.

12. No action is required. Address is not in list.

13. The multicast list must be set in operand.

14. The timeout value must be greater than or equal
to zero.

15. Check the lusr/include/netio.h for the proper req
types.

16. The user-supplied variable type must match the
variable type defined for the ioctl request.

17. The process has not successfully opened the
LAN device. Retry the file open. call.

18. The process specified a signal flag value that is
not defined. Recheck the flag value.

MESSAGE EIO

CAUSE A read or write failure occurred (includes timeout
conditions).

ACTION Retry read or write call at a later time.

MESSAGE EMSGSIZE

CAUSE An attempt was made to write more than the
maximum bytes specified by the selected protocol.

ACTION Set the message size within the limits of the
protocol.

MESSAGE ENETUNREACH

CAUSE A protocol was not configured for this interface, or
the interface was not configured as "up." Refer to
the ifconfig(lm) entry in the HP-UX Reference
manual for more detailed information.

ACTION Use ifconfig to reconfigure the interface.

Error Messages C-5

MESSAGE ENOBUFS

CAUSE An open, write, or ioetl call could not get enough
memory.

ACTION If an open or ioctl call: need to configure more
networking memory. If a write call: the process has
exceeded the allocated outbound network memory.
The write may be retried later when the system has
had time to return used memory to the process
memory pool.

MESSAGE ENOS PC

CAUSE An attempt to write a packet failed as a result of an
outbound queue overflow on the interface card.

ACTION Retry output. Check the LAN volume; it may be
necessary to add additional LAN cards to handle
constant high-volume traffic.

MESSAGE ENXIO

CAUSE 1. An attempt was made to open a LAN device with
an incorrect select code (Series 300/400 only)
or with an incorrect logical unit or protocol
(Series 600/700/800 only).

2. The specified driver call could not complete
because the interface card was found to be in a
dead state (that is, the driver was unable to
communicate with the interface card). The
card must be reset before any further interface
activity can resume.

ACTION 1. Check the device file definitions for proper values.

2. Check hardware and I/O configuration.

C-6 Error Messages

~

MESSAGE EPERM

CAUSE A non-super-user attempted to call a
super-user-only command.

ACTION Set the effective user ID of the process to
super-user to successfully complete the call.

MESSAGE EWOULDBLOCK

CAUSE The LLA connection was opened with the
O_NDELAYoption, and a subsequent read was
performed when data have not been queued for
this connection.

ACTION Retry read later; it may be advantageous to use
SIGNALS to notify the process of the packet
arrival.

Error Messages C-7

Index

lusr/include/netio.h, 1-9
lusr/include/sys/errno.h, 1-13
lusr/lib/libn.a, 1-12

A

ADD MULTICAST, 3-14
address conversion

net_aton(3),2-8
net _ ntoa(3n), 2-8

addresses, network
see network address

management
addresses, network,

managing
see NETCfRL and

NETSTAT
addresses, source and

destination
see source addresses and

destination addresses
addresses, user-level logging

see user-level address logging
Asynchronous signals,

2-18--2-19

B

BAD _CONTROL_FIELD,
3-9

broadcast packets, 3-13
seeNETCfRL

c
C header files

error value definitions, 1-13
LLA structure and macro

definitions, 1-9
network address conversion

routines, 1-12
caching, 2-12
card-level statistics commands for

NETCfRLandNETSTAT
CARRIER LOST, 3-8
DEFER, 3-8
see also: driver-level statistics

commands for NETCfRL
and NETSTAT

EXCESS RETRIES, 3-8
ILLEGAL FRAME SIZE, 3-9
LATE COLLISIONS, 3-8
LITTLE_RX_SPACE, 3-9
MISSED FRAMES, 3-8
MORE COLLISIONS, 3-8
NO_HEARTBEAT, 3-7
NO TX SPACE, 3-9
ONE_COLLISION, 3-8
RESET STATISTICS, 3-6-3-7
RX_BAD_CRC_FRAMES, 3-7
RX FRAME COUNT, 3-7
UNDEL RX-FRAMES, 3-7
UNmANS_FRAMES, 3-7

Index-1

CARRIER LOST, 3-8
close(2), 1-7, 1-13, 2-21
coexistence of IEEE 802.3

and Ethernet nodes, 1-3
CSMNCD

see IEEE 802.3 protocol

D

Data Link Layer, 1-2
data transmission method,

1-3
purpose, 1-3

DEFERRED, 3-8
DELETE MULTICAST,

3-15 -
destination addresses, 2-7,

3-3-3-4
destination service access

points, 2-6, 2-12, 3-4
device drivers

system calls used to access,
1-7

device files
closing, 1-7
creating, 1-6
default names for network

device files, 1-4
descriptors, problems with,

2-1
directory, 1-4
logical unit (LU) numbers,

1-4
logical unit bit

representation for
Ethernet and IEEE 802.3
protocols, 1-4

major and minor numbers,
1-4

opening, 1-7
purpose, 1-4
verifying existence of, 1-4

device-specific parameters, setting
seeNETCTRL

DEVICE_STATUS, 3-5
devices, resetting, 3-12
Diagnostics

LANDAD, 4-2
station address, 4-2

DISABLE BROADCAST, 3-13
driver-level statistics command

furNETCTRL and NETSTAT
TDR,3-9

driver-level statistics commands
furNETCTRLandNETSTAT

BAD CONTROL FIELD, 3-9
RX SPECIAL DROPPED, 3-9
RX-TEST, 3-9-
RX-XID, 3-9
UNKNOWN PROTOCOL, 3-9

dsap -
see destination service access

points

E ~
EBADF, C-1
EBUSY, 2-5, C-1
EBUSY error, 2-4
EDESTADDRREQ, 2-10, 2-15,

C-2
EINTR, 2-10, C-2
EINV AL, 2-2, 2-5, 3-14, C-2
EIO, 2-13, C-5
EMSGSIZE, 2-16, C-5
ENABLE BROADCAST, 3-13
ENETUNREACH, C-5
ENOBUFS, 2-2, 2-15, C-6
ENOSPC, 2-15, C-6
ENXIO, 2-2, C-6
EPERM, 3-14-3-15, C-7 ~
errno(2), 1-13, 3-6-3-7

see also: /usr/include/sys/errno.h
errors

EBUSY, 2-5

EDESTADDRREQ,2-10,
2-15

EINTR, 2-10
EINV AL, 2-2, 2-5, 2-10,

3-14-3-15
EIO, 2-13
EMSGSIZE, 2-16
ENOBUFS, 2-2, 2-15
ENOSPC, 2-15
ENXIO, 2-2
EPERM, 3-14-3-15
EWOULDBLOCK, 2-10,

2-13
Ethernet, 1-2
Ethernet packet, B-2
Ethernet protocol

definition, 1-3
general comparison to IEEE

802.3 protocol, 1-3
user-level address logging,

2-3
EWOULDBLOCK, 2-10,

2-13, C-7
EXCESS_RETRIES, 3-8

F

file transfer programs, 4-2
FRAME_HEADER, 3-3

IEEE 802.3,1-2
IEEE 802.3 frame structure,

B-4
IEEE 802.3 protocol

general comparison to
Ethernet protocol, 1-3

coexistence with Ethernet,
1-3

CSMNCD, 1-3
definition, 1-3

see also: source service access
points, and destination service
access points

unnumbered information (UI)
control field, 3-10

user-level address logging, 2-3
ILLEGAL FRAME SIZE, 3-9
interface card, resettfOg

seeNETCTRL
interface statistics, collecting and

resetting
see NETCTRL and NETS TAT

ioctl(2),1-7-1-8
error codes, 1-13
error conditions, 1-11
see also: NETCTRL,

NETSTAT, and user-level
address logging

syntax, 1-10
using to reset interface card

statistics, 3-6

L

LAN interface card, 1-2
LANDAD,4-2
LATE COLLISIONS, 3-8
Layer 1,1-2
Layer 2, 1-2, B-1
Link Level Access

see LLA
LITTLE RX SPACE, 3-9
LLA - -

device drivers and interface
cards accessed, 1-2

error values, 1-13
examples, 4-1
general programming steps, 2-1
structure and macro header

file, 1-9
warnings, 2-1

LOCAL ADDRESS, 3-4
LOG_CONTROL, 3-10

Index-3

LOG DEST ADDR, 2-7,
3-10 -

LOG DSAP, 2-6, 3-10
LOG-READ CACHE,

2-12:'2-13 -
LOG READ TIMEOUT,

2-13- -
LOG SSAP, 2-5, 3-10
LOG-TYPE FIELD, 3-10
logical unit (LU) numbers

see device files

M

message frames, 1-3
MISSED FRAMES, 3-8
MORE COLLISIONS, 3-8
multicast packets

ADD MULTICAST, 3-14
DELETE MULTICAST,

3-15 -
see also: NETCTRL
reserved addresses, 3-15

MULTICAST ADDR LIST,
3-6 - -

MULTICAST ADDRESS,
3-5 -

multivendor networks, 1-2,
2-4

N

net_aton(3n), 1-12, 2-8, 3-15
net_ntoa(3n), 1-12, 2-8, 3-4
NETCTRL, 3-1

broadcast packet
management, 3-13

declaring a destination
address , 2-7

description of, 1-9
destination service access

point logging, 2-6

Index-4

interface card reset and read
commands, 3-6

see also: multicast packets
see also: network address

management
packet caching, 2-12
problems with, 2-1
resetting devices, 3-12
setting read timeout values , 2-13
source service access point

logging, 2-5
user-level address logging, 2-5

NETSTAT, 3-1, 3-7
see also: card-level (driver-level)

statistics commands for
NETCTRL and NETSTAT,
and ioctl(2)

description of, 1-9
device address, 3-2
device address information, 3-4
device header information,

3-2-3-3
device status, 3-2, 3-5
interface card reset and read

command, 3-7
see also: ioctl(2)
multicast addresses, 3-2, 3-5-3-6

network address management
declaring a destination
address, 2-7

changing dsap values, 3-10
declaring a destination

address, 3-10
source service access point

logging, 2-5, 3-10
type field logging, 2-3, 3-10

network architecture, 1-1
network I/O control

see ioctl(2)
NO HEARTBEAT, 3-7
NO=TX_SPACE, 3-9

o
O_NDELAY, 2-10,2-13
ONE_COLLISION, 3-8
Open Systems

Interconnection
see OSI model

open(2), 1-7
error codes, 1-13
error values, 2-2
with read(2) and write(2)

commands, 2-2
OSI model, 1-1

p

see also: specific layers,
LAN, NS, and ARPA

packet receive cache, 2-12
Physical Layer, 1-2

R

race conditions, 2-14
read(2), 1-7

error codes, 1-13
problems with, 2-1, 3-3
recommended buffer size

for data transfer, 2-11
see also: select(2) and

ioctl(2)
timeouts, 2-13
see also: user-level address

logging
with open(2), 2-2

reading data
blocked reads, 2-10
see read(2)

receiving data
general programming steps,

2-1
RESET_INTERFACE, 3-12

RESET_STATISTICS, 3-6-3-7
RX BAD CRC FRAMES 3-7 - - - ,
RX FRAME COUNT 3-7 - - ,
RX SPECIAL DROPPED 3-9 - - ,
RX_TEST, 3-9
RX_XID, 3-9

s
select(2), 1-7, 2-17

error codes, 1-13
see also: read(2) and write(2)

SIGIO, 2-18
source addresses, 3-3-3-4
source service access points, 2-3
34 '

changing, 2-5
format, 2-5
reserved addresses, 2-5
restricted values, 2-5
user-level address logging

syntax, 2-5
ssap

see source service access points
station address, 4-2

see destination addresses and
source addresses

synchronizing I/O
see select(2)

synchronizing I/O operations, 2-17

T

TDR,3-9
TEST_CONTROL, 3-10
timeouts, 2-13
transmitting data

general programming steps, 2-1
TX_FRAME_COUNT, 3-7
type fields, 2-3, 2-12, 3-3

format, 2-3
logging, 2-3
restricted values, 2-4

Index-5

U

UI CONTROL, 3-11
UNDEL RX FRAMES,

3-7 - -
UNKNOWN

PROTOCOL, 3-9
unnumbered information

(UI) control field
overriding, 3-10

UNTRANS FRAMES, 3-7
user-level address logging,

2-3,2-10, 3-3

w

see also: ioctl(2) and
NETCfRL

write(2), 1-7, 2-15
error codes, 1-13
reliability, 2-12, 2-16
see also: select(2) and

ioctl(2)
with open(2), 2-2

writing data
see write(2)

X

XID CONTROL,
3-io-3-11

Index-6

Flidl HEWLETT
a:~ PACKARD

98194-60524
Edition 1 E0291
Printed in U.S.A. 02/91 English

